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APPROXIMATE BAYESIAN COMPUTATION (ABC)

θ → BLACKBOX → data.

• We have an observation Xo = (Xo1, . . . , Xon) obtained from the “black-
box” for some unknown value of θ say θo.

• The goal is to make inference about θo.

• What happens in the black box is a mystery. We assume that it is not
easy to specify a data generating model. Such a model may have many
components, even may not be analytically expressible.

• Example: Phylogenetic Trees: Too many trees.

• Example: Non-linear differential equations: Complicated model.

• Based on the values generated from the black box ABC methods make
inferences about the parameter without requiring an user to specify a
model for the data generating process.
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BASIC ABC

• Suppose θ ∈ Θ and π(θ) is a prior defined on Θ.

• The basic ABC algorithm goes through the following three steps.

1. Generate θ from π(θ).

2. Simulate X1 = (X11, . . . , X1n) from the black box with parameter θ.

3. Accept θ if Xo = X1, and return to Step 1.

• Clearly if X is a continuous random variable the probability that Xo = X1

is zero. So the above algorithm does not work.
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DIRECT ESTIMATION OF THE TRUE POSTERIOR

• An approximate method is used. The steps are as follows:

1. Choose a small tolerance ϵ > 0, a distance function d, and a vector
of summary statistics g.

2. Generate θ from π(θ).

3. Simulate X1 = (X11, . . . , X1n) from the black box with parameter θ.

4. Accept θ if d(g(Xo), g(X1)) < ϵ, and return to Step 2.

• The acceptance rate and the accuracy of the posterior depend crucially
on ϵ. See (Allingham et. al. [2009]).

• Marjoram et. al. [2003] develop a MCMC ABC method by targeting a
stationary distribution of the form Πϵ(θ, g(X1) | g(Xo)).

• An SMC version of ABC with each chain was considered by Sisson et.
al. [2007].

• How the tolerance ϵ affects the accuracy of the estimated posterior is
not well studied.
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ESTIMATING THE LIKELIHOOD OF g(Xo) GIVEN θ

• In view of the requirements of MCMC sampling, it is actually sufficient to
estimate the likelihood of g(Xo) for every value of θ from the generated
replications Xi, i = 1, 2, . . ., m.

• Wood [2010] asymptotic normality of g for all θ ∈ Θ. He uses a multi-
variate Gaussian Likelihood for g(Xo) where the mean and the covariance
matrix at each θ are estimated using the generated replications.

• An et.al. [2020] take a more semi-parametric approach, where the
marginal density for each component in the summary vector is estimated
using kernel density estimator. The joint density of the summary vector
is the estimated using a Copula.

• Drovandi et. al. [2013] among others use parametric auxiliary models in
indirect inference.

• Random forest based classification techniques which directly estimate the
test ratio in a MCMC step have been successfully used in an ABC setup.
We refer to Pham et. al. [2014] for an example.
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EMPIRICAL LIKELIHOOD (EL) IN ABC

• Mengersen, Pudlo and Robert [2013] were the first to consider the use
of empirical likelihood in ABC setting.

• They assumed that Xo1, . . ., Xon are i.i.d and a set of constraints of the
form

E [h(Xoi, θ)] = 0 ∀ i = 1, . . . , n

are available. Here the expectation is taken w.r.t. the unknown true
distribution.

• An empirical likelihood can then be calculated by re-weighting the data
by weights given by:

ŵ = argmaxw∈Wθ

n∏
i=1

wi, where Wθ =

{
w :

n∑
i=1

wih(Xoi, θ) = 0

}
∩∆n−1.

• They use a fast importance sampling algorithm to sample from the pos-
terior.

• However, the method requires one specify the function h, which is not
easy.
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DATA DEPENDENT EL BASED DIRECT ESTIMATOR OF THE POSTERIOR

• The proposed estimator hinges crucially on the following observation.

• Suppose we could generate m i.i.d. data sets of length n, ie. X1, . . ., Xm

from the black-box putting same parameter value θ1.

• If θ0 = θ1, for each i, For any summary g, g(Xi) and g(Xo) are identically
distributed. So it clearly follows that:

Eθ0 [g(Xi)− g(Xo)] = 0, ∀ i = 1,2, . . . ,m.

• We now build an EL using the above relationship and estimate the pos-
terior.

• Define:

Wθ1
=

{
w :

m∑
i=1

wi {g (Xi)− g (Xo)} = 0

}
∩∆m−1.

l(θ1) =
1

m
max
w∈Wθ1

m∑
i=1

logmwi + Ĥ0
g(x1)|θ(θ1),
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EL BASED DIRECT ESTIMATOR OF THE POSTERIOR (CONTD.)

• Here Ĥ0
g(x)i|θ(θ1) is the estimate of the true differential entropy of the

conditional density of g(x1) given θ at θ1.

• We define an estimator of the true posterior at θ1 as:

Π̂(θ1 | g(Xo)) =
el(θ1)π(θ1)∫
el(t)π(t)dt

∝ e{
1

m
maxw∈Wθ1

∑m

i=1
logmwi+Ĥ0

g(x1)|θ
(θ1)}π(θ1).

• If the maximisation problem is infeasible, we define Π̂(θ1 | g(Xo)) = 0.

• Example: Estimate θ from X ∼
N(0, θ).

• n = 100, θo = 4, π(θ) = U(0,10).
• g(Xi) = maxj(Xij).
• The true log-posterior is in black.
• The coloured lines are the estimated

posterior for m = 5, 25, 50, 100, 500.
• Vertical lines are point-wise 95% con-

fidence bands. 3 4 5 6 7
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DIRECT INFORMATION PROJECTION

• For a θ ∈ Θ, assume X1 was generated using θ and for convenience,
denote, go = g(Xo), g1 = g(X1).

• By construction for each θ, g1 is conditionally independent of go given θ.

• We focus on the conditional density of g1 and θ given go.

• By construction it can be shown that the true conditional is given by:

f0(θ, g1 | go) = f0(g1 | θ)Π(θ | go).

• That is the true density if of the form q′(θ)f0(g1 | θ), where q′(θ) is a
density defined on θ.

• We take a density f(θ, g1 | go) and project it on the above set of densities
by minimising the KL-divergence.

• It can be shown that the projection is given by:

eE
0
g1|θ

[log f(θ,g1,go)]+H0
g1|θ

(θ)∫
eE

0
g1|t

[log f(t,g1,go)]+H0
g1|t

(t)dt
f0(g1 | θ) = f ′(θ | go)f0(g1 | θ).

• That is for a user chosen density f , f ′(θ | go) is an estimate of Π(θ | go).
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CONNECTION TO THE PROPOSED EL

• In the EL formulation, we estimate the expectation by the mean of the
log EL weights.

• Furthermore, in order to uniquely find an optimal density f , we need to
ensure that,

1. the corresponding conditional density of g1 given θ is the same as the
corresponding conditional density of go given θ, and

2. the corresponding marginal density of θ is the prior π.

• The first constraint is approximately ensured by the particular choice of
the constraints.

• It can be shown that the best estimate of the underlying density can be
obtained from a reverse information projection.

• In short, The proposed EL-based method is well-justified.
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ASYMPTOTIC PROPERTIES

• Under mild conditions, as n → ∞, the approximate posterior converges
to the degenerate distribution supported on the true parameter value θ0.

• Even if the number of replications, i.e. m, grow much faster than sample
size n (even exponentially if the underlying distribution is normal), the
posterior consistency would be retained.

• The number of replications growing to infinity by itself ensures that the
probability of exp( 1

m

∑m
i=1 log(ŵ(θo))) does not collapse to zero grows to

one.

• We can show that for fixed n, and fixed number of summaries, the pos-
terior will be more flat as m grows.

• In order to maintain the frequentist coverage, larger m would require
larger number of summaries.
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RESULTS FOR A GAUSSIAN MEAN
• Estimation of mean from a

standard normal distribution.
• We assume a standard normal

prior on the mean.
• Take n = 100, m = 25.
• For mean as the summary, the

histogram of the observations
drawn via MCMC matches
with the true posterior, i.e.
N

(∑n
i=1Xoi/(n+1), (n+1)−1

)
.
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• We present the coverages and average lengths of the 95% confidence
intervals for various choices of the summary statistics:

Choice of g rep Cov. Ave. Len.
1st moment (mean) 25 0.95 0.360
Median 25 0.95 0.446
1st and 2nd central moments 40 0.94 0.330
Mean and median 40 0.94 0.330
1st, 2nd and 3rd central moments 70 0.91 0.307
3 quartiles 75 0.93 0.329
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RESULTS: g − and− k DISTRIBUTION

• The distribution is expressed by its quantile function

Q (r;A,B, g, k) = A+B

(
1+ .8

1− e−gz(r)

1+ e−gz(r)

)(
1+ z(r)2

)k
z(r),

where z(r) is the rth standard normal quantile.

• The parameters A, B, g and k respectively represent location, scale,
skewness and kurtosis of the distribution.
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• θo = (Ao, Bo, go, ko) = (3,1,2,0.5),
n = 1000, m = 40, θ ∼ U(0,10)4.

• Summary statistics used: mean
and three quartiles.

• EL: bold− line, BSL: dashed− line,
ABC: dotted− line.

• The usual summaries based on oc-
tiles results in slightly inferior per-
formance in estimating k.

• The synthetic likelihood is ex-
pected to work well here.
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ARCH(1) MODEL

• The ARCH(1) model is defined as

Xij = σijϵij, σ2
ij = α0 + α1X

2
i(j−1),with ϵj ∼ N(0,1), α0 > 0, α1 ∈ (0,1).
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• True parameters (3,0.75), n = 1000, m = 50,
π = U((0,5)× (0,1)).

• Summary: Three quartiles of |Xi|. The fourth
one is the following:

Yij = X2
ij −

n∑
j=1

X2
ij/n,

g4(Xi) =
1

n

n∑
j=2

[
1{(Yij·Yi(j−1))≥0} − 1{(Yij·Yi(j−1))≤0}

]
.

• This summary controls the lag−1 dependence
in the data.

• Summaries are not asymptotically normal.

• Synthetic likelihood estimates are quite different from those obtained by
the rejection ABC. This is specially true for α1.
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BOOM AND BUST MODEL

• This a four parameter (r,κ,α,β) stochas-
tic model taking values in the set of non-
negative integers.

• Given Nt and the parameters:

Nt+1 ∼
{
Poisson(Nt(1 + r) + ϵt, if Nt ≤ κ

Binom(Nt, α) + ϵt, if Nt > κ
,

where ϵt ∼ Poisson(β).
• n = 200, (burn-in 50), m = 40.
• True values (0.4,50,0.09,0.05).
• We used the following types summaries:

1. Proportion of observations in the in-
terval (0,15). (Upcrossings !)

2. Proportion of differences Nt+1 − Nt

strictly larger than 2. (Errors !)
3. We computed the smoothed peri-

odograms and used the proportion of
log-amplitudes in (5.120,6.278). (Au-
tocovariances !)

4. The numbers chosen judiciously from
the observed data.
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EDGE PROBABILITY OF AN ERDÖS-RENYI RANDOM GRAPH

• We estimate the edge probability p
of an Erdös-Renyi random graph with
number of vertex n = 100.

• We put a Beta(1.5,1.5) prior on p.
• The number of edges and the num-

ber of triangles were used as summary
statistics.

• We used m = 25 replications.
• Even though we are estimating param-

eters, this method does not show any
weight degeneracy issues.

• In fact, the posterior is quite close to
normal.

• This method can be generalised to
more complicated models for p.
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STEREOLOGICAL DATA

• Inclusions are microscopic particles introduced in the steel production
process. The size of the largest inclusion in a block is thought to be
important for steel strength.

• The data considered here were first analysed by Anderson and Coles
[2002], and consist of measurements on inclusions from planar cross-
sections.

• We try to model the diameters of inclusions in a block of steel.

• We assume that the inclusion centres follow a homogeneous Poisson
process with rate λ.

• Conditional on exceeding a threshold value v0, the largest inclusion di-
ameter V , is assumed to follow a generalised Pareto distribution:

pr(V ≤ v|V > v0) = 1−
{
1+

ξ(v − v0)

σ

}−1

ξ

+

.

• Given V , the other two principal diameters are determined by multiplying
V with two independent U [0,1] random variables.
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RESULTS: STEREOLOGICAL DATA
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• Solid line: proposed EL based
method with m = 25.

• Dashed line: Synthetic likelihood
with the same summary statistics.

• Dotted line: Rejection ABC with
ϵ = 0.00005 based on 10,000,000
datasets.

• Here n = 112.
• L is the number of inclusions. The

summary statistics used are:
a) (L− 112)/100,
b) the mean of the observed pla-

nar measurements,
c) the median of the of the ob-

served planar measurements,
and

d) the proportion of planar mea-
surement less than or equal to
6.

• We assume independent uniform priors for λ, σ and ξ with ranges (1,200),
(0,10) and (−5,5) respectively.
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CONCLUSION

• We provide a solution to the ABC problem using empirical likelihood
based method.

• The proposed method estimates the posterior directly and is based on
an interpretable likelihood where the only required inputs are a choice of
summary statistic, it’s observed value, and the ability to simulate that
particular statistic under the model for any parameter value.

• The parameter estimates have interpretable and favourable properties.

• Good adaptive MCMC procedures are required to draw samples from the
posterior.

• The choice of summaries are important. Bad summary statistics may
lead to slow mixing of the MCMC. However, the proposed method is no
worse than the Synthetic likelihood for such summaries.
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