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Background: Role of the Gibbs�sampler

The Gibbs�sampler (Geman and Geman 1984, Gelfand and Smith
1990) has been enormously important to the development of Bayesian
inference over the last 40 years.

BUGS and JAGS have also been very important

Many papers applying it to various statistical models.

Natural application to linear mixed models, which are popular in small
area estimation (SAE).

Leading MCMC algorithm; produces dependent simulation sequences.
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MCMC: Gibbs�sampler vs alternatives

Question: How good is the Gibbs�sampler compared to alternative
algorithms for linear SAE models?
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Measure of performance of any MCMC algorithm would re�ect the
amount of dependence in the simulation sequences

autocorrelation functions (ACFs)

Monte Carlo variances for estimates of posterior quantities
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MCMC: Gibbs�sampler vs alternatives

Question: How good is the Gibbs�sampler compared to alternative
algorithms for linear SAE models?

Measure of performance of any MCMC algorithm would re�ect the
amount of dependence in the simulation sequences

autocorrelation functions (ACFs)

Monte Carlo variances for estimates of posterior quantities
(e.g., for posterior means of parameters)

We shall examine the performance of the Gibbs�sampler versus
alternatives for two examples done using JAGS.
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Example 1: Fay-Herriot (1979) model

yi jθi � N(θi , vi ) i = 1, . . . ,m = 51

θi jβ, σ2 � N(x 0i β, σ2)

p(β, σ2) _ 1

yi = direct survey estimate of population characteristic θi for area i

vi = sampling variance of yi (vi assumed known)

xi = vector of regression variables (3 + intercept) for area i

β = vector of regression parameters
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Example 1: Gibbs�sampler for the FH model

Full conditional distributions for the FH model with p(β, σ2) _ 1,
y = (y1, . . . , ym)0, θ = (θ1, . . . , θm)0:

[βjy, θ, σ2] = [βjθ, σ2] � N(β̂,V (β̂))
where β̂ = (X 0X )�1X 0θ, V (β̂) = σ2(X 0X )�1 = O(1/m).

[σ2jy, θ, β] = [σ2jθ, β] � σ̂2
�

χ2m+2
m

��1
where σ̂2 = 1

m

m
∑
i=1
(θi � x 0i β)2.

[θi jyi , β, σ2] � N(θ̂i ,V (θ̂i ))

where θ̂i = hiyi + (1� hi )x 0i β, V (θ̂i ) = hivi , hi = σ2

σ2+vi
.
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Example 1: FH model, Gibbs�sampler ACFs

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

beta[2]

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0
Lag

A
ut

oc
or

re
la

tio
n

sigma2

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

theta[1]

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

theta[2]

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

theta[3]

0 10 20 30 40 50
−

1.
0

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

theta[4]

Bell () Reconsidering the Gibbs�sampler August 2, 2019 9 / 23



Example 1: FH model, ACFs for Gibbs�sampler and for
non-hierarchical model speci�ed to JAGS
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Example 1: Fay-Herriot model

MCMC variance ratio: MC variance of posterior mean for hierarchical speci�cation
MC variance of posterior mean for non-hierarchical speci�cation

parameter β2 σ2 θ1 θ2 θ3
variance ratio 10.7 22.4 4.3 3.6 11.6
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Example 1: Alternative speci�cations of the FH model

Hierarchical model speci�cation:

yi jθi � N(θi , vi )
θi jβ, σ2 � N(x 0i β, σ2)

Non-hierarchical model speci�cation:

yi = θi + ei � N(x 0i β, σ2 + vi )

Here we "integrate out the random e¤ects," which avoids the Gibbs�
sampler.
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Example 2: Bivariate functional measurement error model

For i = 1, . . . ,m = 51, let yi = (y1i , y2i )0 and θi = (θ1i , θ2i )0. Then

yi jθi � N (θi ,Vi ) , Vi =
�
vi11 0
0 vi22

�

θi1jxi , β1, δ1 � N
�

β1xi + z
0
i1δ1, σ11

�
θi2jxi , β2, δ2 � N

�
β2xi + z

0
i2δ2, σ22

�
cov(θi1, θi2jxi , β, δ) = σ12 ρ = σ12/

p
σ11σ22

Xi jxi � N(xi ,Ci ) Ci assumed known

Note that

E (θij jXi , β, δ) = βjXi + z
0
ijδj var(θij jXi , β, δ) = β2j Ci + σjj .
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Example 2: Bivariate functional measurement error model
ACFs - Gibbs�sampler vs non-hierarchical spec to JAGS
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Example 2: Bivariate functional measurement error model
ACFs - Gibbs�sampler vs independence chain
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Example 2: Bivariate functional measurement error model

MCMC variance ratio h/nh: MC variance of posterior mean for hierarchical spec
MC variance of posterior mean for non-hierarchical spec

MCMC variance ratio h/Ind: MC variance of posterior mean for hierarchical spec
MC variance of posterior mean for independence chain

parameter β2 δ2 σ22 ρ

variance ratio h/nh 6.7 5.7 7.0 9.8
variance ratio h/Ind 18.2 9.3 4.1
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Why the poor performance of the Gibbs�sampler?

Full conditional distributions for the FH model with p(β, σ2) _ 1,
y = (y1, . . . , ym)0, θ = (θ1, . . . , θm)0:

[βjy, θ, σ2] = [βjθ, σ2] � N(β̂,V (β̂))
where β̂ = (X 0X )�1X 0θ, V (β̂) = σ2(X 0X )�1 = O(1/m).

[σ2jy, θ, β] = [σ2jθ, β] � σ̂2
�

χ2m+2
m

��1
where σ̂2 = 1

m

m
∑
i=1
(θi � x 0i β)2.

[θi jyi , β, σ2] � N(θ̂i ,V (θ̂i ))

where θ̂i = hiyi + (1� hi )x 0i β, V (θ̂i ) = hivi , hi = σ2

σ2+vi
.

"Thinning" of the MCMC chains does not solve the dependence problem.
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Densities of m/χ2m+2
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Alternative algorithms to the Gibbs�sampler for mixed
linear models

Chib, S. and Carlin, B. P. (1999). On MCMC sampling in hierarchical
longitudinal models. Statistics and Computing, 9, 17-26.

Wol�nger, R. D. and Kass, R. E. (2000). Nonconjugate Bayesian
analysis of variance component models, Biometrics, 56, 768-774.

accept/reject algorithm with a proposal density that approximates the
posterior of the variance components; proposal remains �xed
throughout simulations (independence chain)
adapted to multivariate measurement error model by Arima, Bell,
Datta, Franco, and Liseo (2017)

STAN

SAS
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Conclusions

Though convenient, the numerical performance of the Gibbs�sampler
for mixed linear models, such as models used in small area estimation,
is quite poor.

More e¢ cient algorithms are readily available, including by simply
programming mixed linear models in non-hierarchical form in BUGS
or JAGS.
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