Annual Review Process for the Seasonal Adjustment of MSA

Jennifer Oh OEUS/SMS 2024 FCSM Research and Policy Conference October 22, 2024

Outline

- MSA Data
- SA Method
- Annual Processing Steps
- How to handle bad fitting models
- Tools to evaluate model: Diagnostic Tables and Graphs

Metropolitan Statistical Area (MSA)

- MSA Areas: 428 areas (EM + UN) =856
- Data Span: 1990+
- Series are split into two parts: pre-2000 and 2000+ (methodology and labor market area changes)
- Software: X-13A-S (ARIMA-SEATS)
- Seasonal Adjustment was done with SEATS

SEATS Diagnostics

• Fit of ARIMA model to series

Ljung-Box goodness of fit statistics- LB12, LB24

- MA12 coefficient-stable seasonality
- Seasonal peak-Spectrum graphs
- Chi-square-changing seasonality

Annual Processing

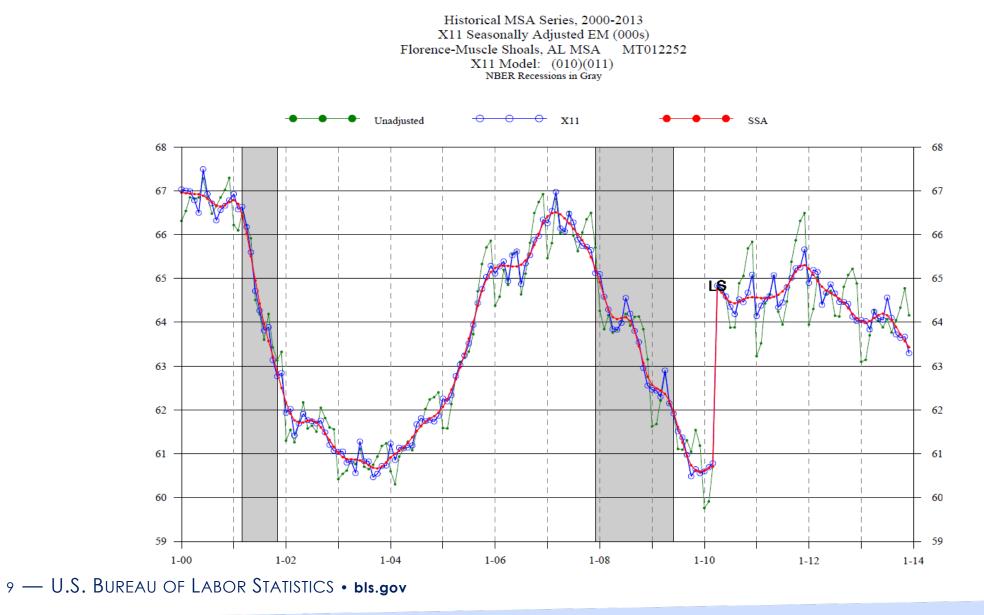
- At the beginning of a new year, previous year's data would be revised
 - Population control
 - Data edits
 - Change in Benchmark
- Re-examining historical series with revised data
- Test for new outliers

Annual Processing Steps

- Step1. Add revised data and run with existing ARIMA model
 - For good fits, leave models unchanged
 - For bad fits, manually re-specify models
- Step2. Check for significant change in seasonality using Chi-sq statistics
 For those MSAs with Seasonal regressor, we want to check they are still significant
- Step3. Clean up bad fitting series
- Step4. Ready for monthly estimates

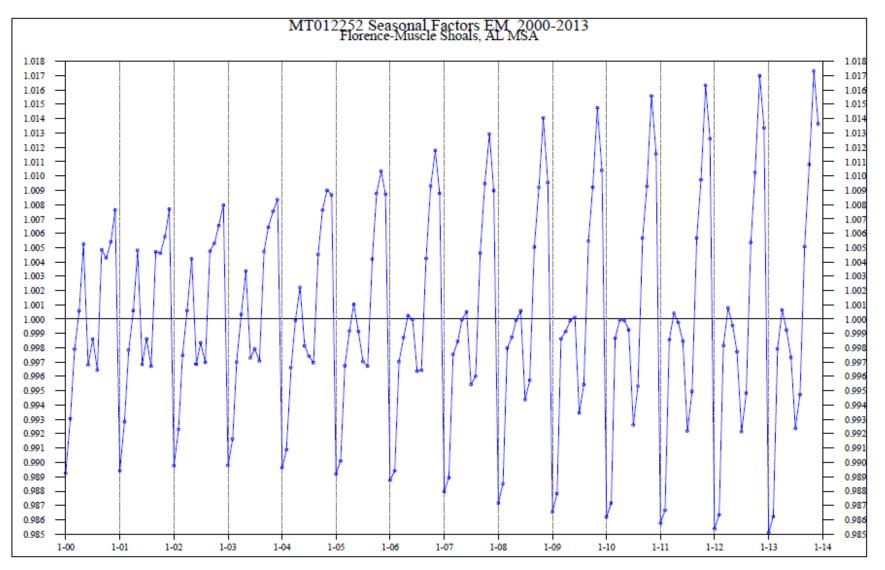
Poor fitting model (1 of 4)

- **1**. My series even seasonal?
 - If my series not seasonal, we do not want to seasonally adjustment them.
 - If series is not seasonal, SEATS will not go through seasonal adjustment process.



Poor fitting model (2 of 4)

- 2. Is there changing seasonality?
 - Sometimes seasonality change so much over the span of time, X13 will have hard time finding a good fitting model
 - We need to test for changing seasonality by chi-square test.
 - Chi-square p-value <= 0.01 is considered significant</p>



Seasonal Reg. Example

Example of Seasonal Plot w/o Seasonal Regressor

X13A-S Spec Example (adding in Sea. Reg.)

<pre>series{</pre>	
span	=(2000.1,2023.12)
title	='MT0122520000000_EM_Florence-Muscle Shoals, AL MSA'
file	='/cpslaus/D10/Stars/SadAreas/Annual/programs/x12_files/AL/EM/x11/MT0122520000000.dat'
format	='datevalue'
precision	=5
decimals	=2
}	
<pre>transform{</pre>	
function	=auto
}	
regression{	
variables	=(seasonal//2010.jan/
TC2010.jan	
LS2010.apr	
LS2017.jan	
TC2020.apr	
)	
save	=(ls ao tc a10)
}	
arima{	
model	$= (3 \ 1 \ 1) \ (0 \ 1 \ 1)$
}	

X13A-S Output Example (Chi-Sq)

Chi-squared Tests for Groups of RegressorsRegression EffectdfChi-SquareP-ValueSeasonal (starting 2010.Jan)1125.360.01

Poor fitting model (3 of 4)

- 3. My series too long?
 - Our MSA series are already cut pre- and post- year 2000.
 - methodology and labor market area changes
- 4. My model overly complex?
 - Most of the time simple model (like airline) is better than complex model.
 - Complex high order model tends to change with additional data.

Poor fitting model (4 of 4)

5. Identifying outliers correctly?

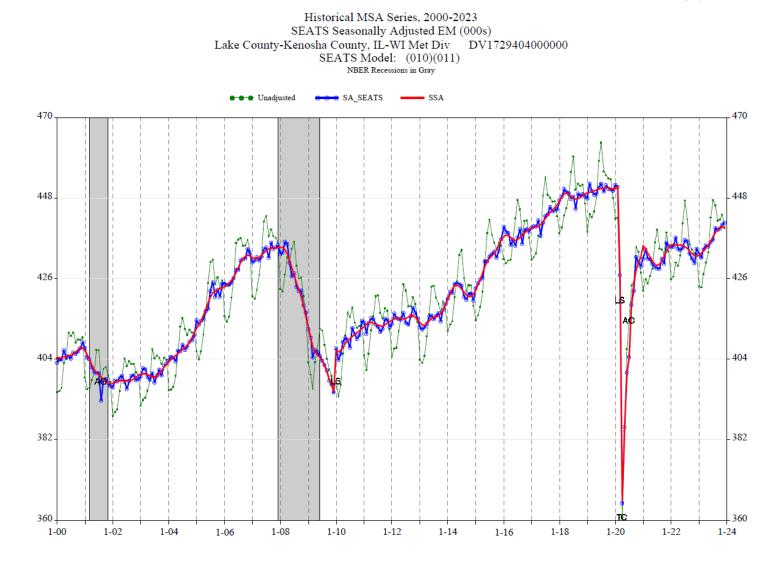
States may have better information about their local events that need to be tested as outliers.

- HI requested: Maui Wildfire (Aug. and Sep. 2023)
- FL requested: Hurricane Ian (Oct. 2022)
- Drop outliers that are no longer significant
- Change in Outlier type: Pandemic outliers

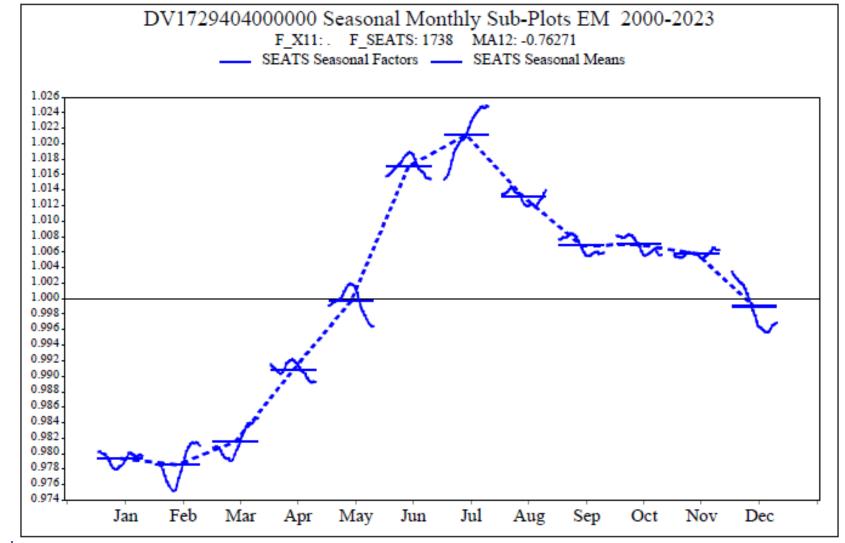
Add in new outliers

Diagnostic Tables

areacode	modelst	numoutst	modest	lb12st	lb24st	p12st	p24st	chi_sea	chi_sea_p	lamrst	plamrst	skewst	exkst	hetst	ar1cst	ar2cst	ma1cst	ma12cst
DV1720994000000	(010)(011)	17	Mult	25.7	34.3	*0.01	0.06	82.2	0	0.6	0.8	-0.1	0.1	0.6				-0.7481
DV1729404000000	(010)(011)	3	Mult	14.5	25.1	0.21	0.35			0.0	1.0	0.0	0.0	0.7				-0.8484
MT1714010000000	(011)(011)	4	Mult	10.3	31.8	0.41	0.08			1.5	0.5	0.2	-0.1	0.7			-0.2200	-0.7567
MT1716060000000	(011)(011)	16	Mult	19.9	30.0	*0.03	0.12	49.7	0	2.6	0.3	0.0	0.5	1.7			-0.3068	-0.5299
MT1716580000000	(011)(011)	20	Mult	12.0	31.1	0.29	0.09	25.8	0.01	8.3	*0.02	0.2	0.8	1.0			-0.3428	-0.1486
MT1716980000000	(211)(011)	3	Mult	8.6	17.7	0.38	0.61			4.9	0.1	0.0	0.7	0.7	-0.5563	-0.2995	-0.5802	-0.8197
MT1719180000000	(110)(011)	14	Mult	9.7	24.6	0.47	0.32	46.6	0	0.2	0.9	-0.1	0.0	1.5	0.1960			-0.9945

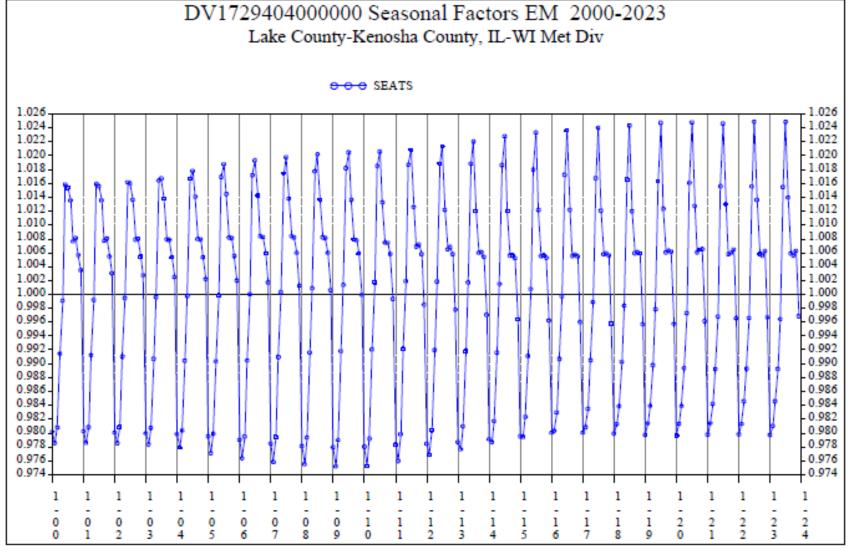

Outlier List

type	st	t	areacode	coef	year	month
LS	IL	(-7.5)	DV1720994000000	-0.037	2008	10
LS	IL	(-5.0)	DV1720994000000	-0.029	2010	1
LS	IL	(-13.0)	DV1720994000000	-0.065	2020	3
тс	IL	(-38.5)	DV1720994000000	-0.178	2020	4
AO	IL	(-5.0)	DV1720994000000	-0.018	2020	7
LS	IL	3.6	DV1720994000000	0.019	2021	11
LS	IL	5	DV1729404000000	0.029	2010	1
LS	IL	(-9.0)	DV1729404000000	-0.053	2020	3
тс	IL	(-30.1)	DV1729404000000	-0.164	2020	4

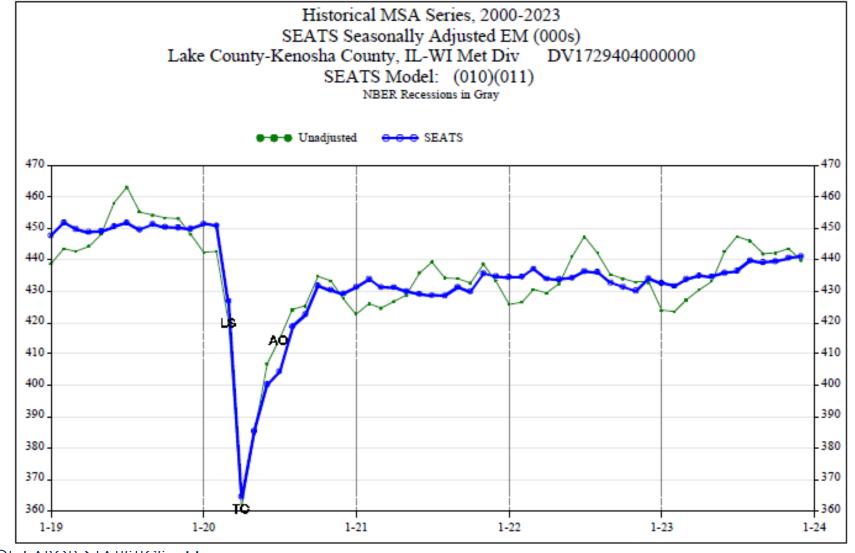


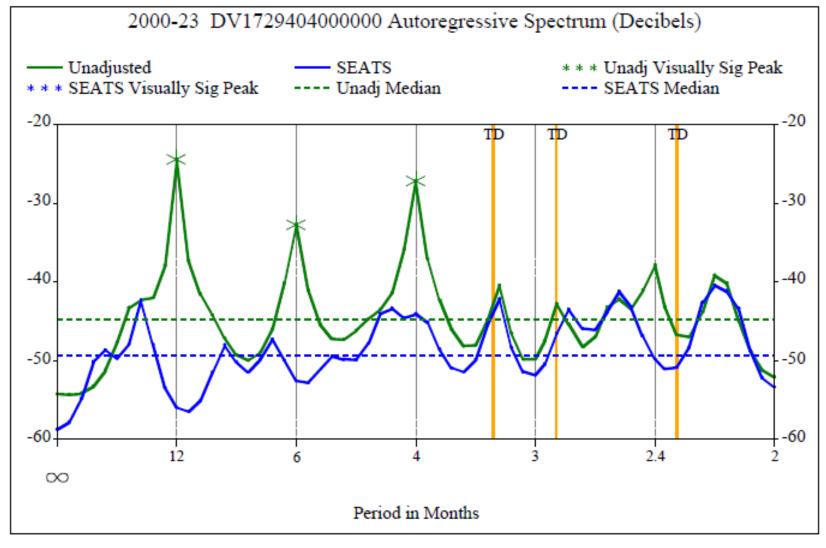
Historical Graph

18:53 Monday, April 15, 2024 5



Seasonal Sub-Plot


Seasonal Plot


19 - U.S. BUREAU OF LABOR STATISTICS . DIS. GOV

Seasonally Adjusted

Spectrum Graph

Contact Information

Jennifer Oh

OEUS/SMS

oh.Jennifer@bls.gov

