An Integer Programming Cell Suppression Algorithm – Providing Company Level Protection in One Optimization

Bei Wang Economic Statistical Methods Division, U.S. Census Bureau

Disclaimer: Any opinions and conclusions expressed herein are those of the author(s) and do not reflect the views of the U.S. Census Bureau. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product [Disclosure Review Board (DRB) approval number: CBDRB-FY24-ESMD005-002].

Outline

- Cell suppression models and process
 - Linear Programming (LP) model
 - Sequential LP cell suppression program currently in production (LP-prod)
 - Integer Programming (IP) model
- Adding tailored capacity to the cell suppression model
 - LP-cap and IP-cap
- Applications of LP-cap and IP-cap

Background 1/2 Cell Suppression

• One of many disclosure avoidance methods

- Primary sensitive cells are identified using p% rule Ps
- Complements are selected to protect the Ps from being derived via subtraction – Cs
- Ps and Cs are suppressed in the publication
- Used by Economic Census and other economic programs

Background 2/2 Cell Suppression

- Model used
 - Network minimal cost flow (MCF) 1992 through 2007
 - Protect one P and one hierarchical table at a time
 - Backtracking necessary for overlapping table, could lead to infinite loop.
 - Linear Programming (LP) 2012, 2017, 2022
 - Adopted 2-trial a suppression pattern is determined after two optimizations in each sequence
 - Solution is searched through whole data structure (globally)
 - Eliminated backtracking
 - Developed mLP find protection for multiple primaries in one model
 - 1-LP when m = 1

Notation Used in the Model

Notation	Description
$x_{i,j,k}^+$, $x_{i,j,k}^-$	each cell defines two variables; one represents the flow coming into the cell and the other out of the cell
$x_{p,i,j,k}^+, x_{p,i,j,k}^-$	similar as above, but distinguished for each P
$Z_{i,j,k}$	binary variables corresponding to $x_{p,i,j,k}^{\pm}$ used to coordinate across IP instances
i,j,k:	for a 3-dimension table with each index represents a dimension
C _{i,j,k}	constant, appears in cost objective function, determines the cost of cell
$cap_{i,j,k}^p$	capacity of cell(<i>i,j,k</i>) to target <i>p</i>
$v_{i,j,k}$	constant, usually cell's value, used in bound of a variable We sometime set $c_{i,j,k} = v_{i,j,k}$

Other Notations

Notation	Description
Р	set of primary cells determined by sensitivity rule, usually, $p\%$ rule
С	set of complements produced by cell suppression program
n_p	$= \mathbf{P} $
Seq-LP	LP cell suppression program usually a sequential process
mLP	multiple (m) primaries are solved in a sequence
IP or sim-IP	IP cell suppression program referring a simultaneous process

LP cell suppression model (used in LP-prod)

To find complementary (C)s for a particular primary (P)

Objective

• Linear constraints

• Additive_linear_constraints($x_{i,j,k}^{\pm}$):

$$\begin{split} & \sum_{rrel(i)} (x^+_{rrel(i),j,k} - x^-_{rrel(i),j,k}) = (x^+_{1,j,k} - x^-_{1,j,k}) \\ & \leq \int_{crel(j)} (x^+_{i,crel(j),k} - x^-_{i,crel(j),k}) = (x^+_{i,1,k} - x^-_{i,1,k}) \\ & \leq \int_{lrel(k)} (x^+_{i,j,lrel(k)} - x^-_{i,j,lrel(k)}) = (x^+_{i,j,1} - x^-_{i,j,1}) \\ & \qquad \text{for } i,j \end{split}$$

• P_constraint:

 $x_*^+ = prot(p)$, $x_*^- = 0$

$$\min \sum_{i=1}^{rows} \sum_{j=1}^{cols} \sum_{k=1}^{levs} c_{i,j,k} \left(x_{i,j,k}^+ + x_{i,j,k}^- \right)$$

LP cell suppression program is a Sequential process (LP-prod, seq-LP)

• For each p in primary set {

Solve

objective:

subject to

+ p_constraints

Update:

ls p

protected?

1. Set Cs

2. Mark any additional Ps that are protected.

Simultanous IP model (Sim-IP)

• Objective is to minimize value suppressed

 $\min Y = \sum_{i=1}^{rows} \sum_{j=1}^{cols} \sum_{k=1}^{levs} c_{i,j,k} \mathbf{x}_{i,j,k}$

- For each primary p_{index} additive_linear_constraints($x_{pindex,i,j,k}^{\pm}$), 0 = 0 p_constraint(p_{index}) n_p
- For each primary p_{index} $logic_constraints(z_{i,j,k}, x_{pindex,i,j,k}^{\pm}):$ $x_{pindex,i,j,k}^{+} + x_{pindex,i,j,k}^{-} - prot(p_{index}) * z_{i,j,k} \le 0$

How is the company level protection achieved in LP-prod?

• Two passes:

- Base pass provides table level protection
- Super cell pass provides company level protection
 - Find list of super cell (sc)- aggregation of 2 or more of P&C cells, in a relation, that failed p% test.
 - For each sc
 - Check and potentially lower the capacity of cells in the dimension of supercell
 - Find complementary suppression(s)
- Why two passes? Why weren't the tailored capacity implemented in the LP-prod?
 - Allows one model to handle multiple Ps
 - Leads to over suppression

Two-pass Programs

	One pass	Two-pass
LP Model (sequential)		LP-prod: mLP, 1LP
IP Model (simultaneous)		IP

Adding Tailored Capacity to Cell Suppression Model

- Capacity defines how much protection a cell can give to a target P cell
- Tailored capacity defines how much protection a cell can give to a target P cell when accounting for company-level protection
- Usually, capacity appears in the bounds

$$0 \le x_{i,j,k}^+, x_{i,j,k}^- \le cap_{i,j,k}^p$$
$$0 \le cap_{i,j,k}^p \le v_{i,j,k}$$

• To 1-LP model

Only one pass necessary, but n optimizations vs 2n from LP-prod

• To IP model

Leads to a one optimization problem: one pass

Calculating Tailored Capacity

- We use p% rule to identify sensitive cell. When evaluating an adjacent cell, x, trying to protect a sensitive cell, we measure the aggregates by p% rule
 - Compute prot(p) and prot($x \cup p$) by p%
 - prot(*P*) how much protection does the P need
 - $prot(x \cup p) how much protection does P need if cell x is selected as complementary$
 - If $prot(x \cup p) > 0$ then
 - $cap^{p}(x) = prot(P) prot(X \cup P)$
 - Else
 - $cap^p(x) = val(X)$

The one pass algorithm

- Implementing tailored capacity to the base pass
- Eliminating super cell pass
- Applies to both LP (1-LP) and IP (LP-cap & IP-cap)

Why one pass? What are the advantages?

- 1. more sufficient suppression
- 2. Ideal for IP cell suppression model

Programs

	One pass	Two-pass	
LP Model (sequential)	LP-cap	LP-prod: mLP, 1LP	
IP Model (simultaneous)	IP-cap	IP	
One			
optimization			
program			

Example 2-pass vs 1-pass

Simple 1D data : column 1 = column 2 + column 3 + column 4 + column 5

LP-prod (2-pass)					
1	2	3	4	5	
242	155 P=6	26	24	37	
LP-cap (1-pass)		(super pass)	(base pass)		
242	155 P=6	26 C=6	24	37	

IP Cell Suppression Model

- a perfect candidate to add tailored capacity
- A new set of variables is used for each $p \in P$
- For example, $x_{p_1,i,j,k}^{\pm}$ for p_1 , and $x_{p_2,i,j,k}^{\pm}$ for p_2 where $p_1, p_2 \in \mathbb{P}$
 - $x_{p_1,i,j,k}^{\pm}$ and $x_{p_2,i,j,k}^{\pm}$ referring to the same cell in the table for the same *l,j,k*, yet are two different variables.
 - The disjoint sets of variables allows us to add tailored capacity
- Adding tailored capacity to a simultaneous IP cell suppression model
 - Find solution only in one optimization
 - Provide desired company level protection

Test data

• Tiny

A tiny extract from Econ Census - 70 cells & 42 Ps

- Annual Capital Expenditure Survey (ACES) 4620 cells & 71 Ps
- Econ Census

1958 cells & 891 Ps.

Tests on three different data sources comparing LP-prod and LP-cap		Tiny	2015 ACES	Econ Census
# Cells in the overall table or publication		70	4,620	1,958
# P's (primaries)		42	71	891*
LP (Standard for comparison)	Count of Complements	16	197	177
	Value of Complements	96,910	4,475,000k	3,425k
LP-cap	Count of Complements	14	190	177
	Value of Complements	94,650	4,471,000k	4,183k
%change in suppression	Count of Complements	-12%	-3%	-0%
(cells,value)	Value of Complements	-2%	-0.1%	+2%
*This is an unduplicated count All data value truncated to 4 significant digits for disclosure purposes				

Tests on three different data sources comparing LP-prod and IP-cap		Tiny	2015 ACES	Econ Census
# Cells in the overall table or publication		70	4,620	1,958
# P's (primaries)		42	71	891*
LP (Standard for comparison)	Count of Complements	16	197	177
	Value of Complements	96,910	4,475,000k	3,425k
ІР-сар	Count of Complements	9	148	171
	Value of Complements	69,730	4,359,000k	3,367k
%change in suppression	Count of Complements	-44%	-25%	-3.4%
(cells,value)	Value of Complements	-28%	-2.6%	-1.7%
*This is an unduplicated count All data value truncated to 4 significant digits for disclosure purposes				

Conclusions

- Better suppression pattern, in general
 - LP-cap > LP-prod
- Although in one case
 - LP-cap < LP-prod (Econ Census research in progress)
- IP-cap is a one optimization program that
 - Provides the best cell suppression results from all test data Examples are Annual Capital Expenditure Survey (ACES), Econ Census
 - Under suppression is possible when $cap^{p}(x_{1}\cup x_{2}) < cap^{p}(x_{1}) + cap^{p}(x_{2})$
 - Is computationally complex NP-hard

Bibliography

- José H. Dulá, James T. Fagan, Paul B. Massell. (2004). *Tabular Statistical Disclosure Control:Optimization Techniques in Suppression and Controlled Tabular Adjustment*. Suitland: US Census Bureau https://www.test.census.gov/content/dam/Census/library/working-papers/2004/adrm/rrs2004-04.pdf
- Martin Serpell, Alistair Clark, Jim Smith and Andrea Staggemeier. (n.d.). Pre-processing Optimisation applied to the Classical Integer Programming Model for Statistical Disclosure Control.
- Philip Steel, James Fagan, Paul Massell, Richard Moore Jr., John Slanta, Bei Wang. (2013). Re-development of the Cell Suppression Methodology at the US. *Joint UNECE/Eurostat work session on statistical data confidentiality.* Ottawa, Canada.

I'd like to thank Godfried de Goey for his comments and suggestions.

