Disclosure control for a dataset with uncommon characteristics: A case study of the Census of Fatal Occupational Injuries (CFOI)

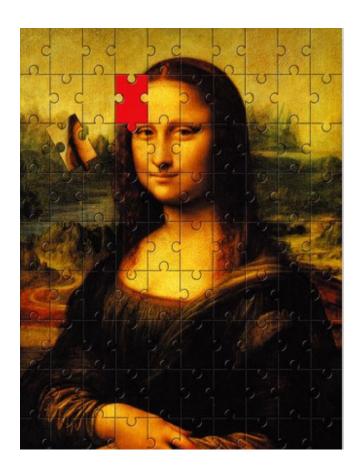
Danny Friel Office of Compensation and Working Conditions

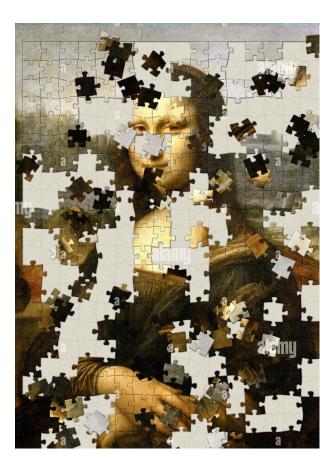
FCSM Research & Policy Conference October 23, 2024

Co-authors

- Alyssa Gillen
- Julie Krautter
- Yvan Saastamoinen

The views expressed here are those of the authors and do not necessarily reflect the views or policies of the Bureau of Labor Statistics or any other agency of the U.S. Department of Labor.




Outline

- What is disclosure control?
- Disclosure control for CFOI
- Defining utility
- Refining the hypercube
- Discussion

Inference in the face of uncertainty

Census of Fatal Occupational Injuries (CFOI)

Publishes a complete count of fatal injuries each year

- Protecting CFOI data is challenging
 - No sampling
 - Fatal injuries are rare events
 - Exact counts are important
 - Cases are classified into 16 categorical variables (industry, occupation, gender, nature of injury, ...)

Primary vs. secondary suppression

Primary suppression onlyThe count for occupation 3 doesn't meet publishability criteriaOccupationNumber of fatal injuriesAll occupations100Occupation 180Occupation 218Occupation 3--

Even though this cell is suppressed, we have enough information to compute its value: 100 - 80 - 18 = 2

Primary and secondary suppressions						
The count for occupation 2 is suppressed as well						
Occupation	Occupation Number of fatal injuries					
All occupations	100					
Occupation 1	80					
Occupation 2	×					
Occupation 3						

With two cells suppressed, we don't have enough information to compute either value. Possible values include 20 and 0, 19 and 1, 10 and 10, 15 and 5...

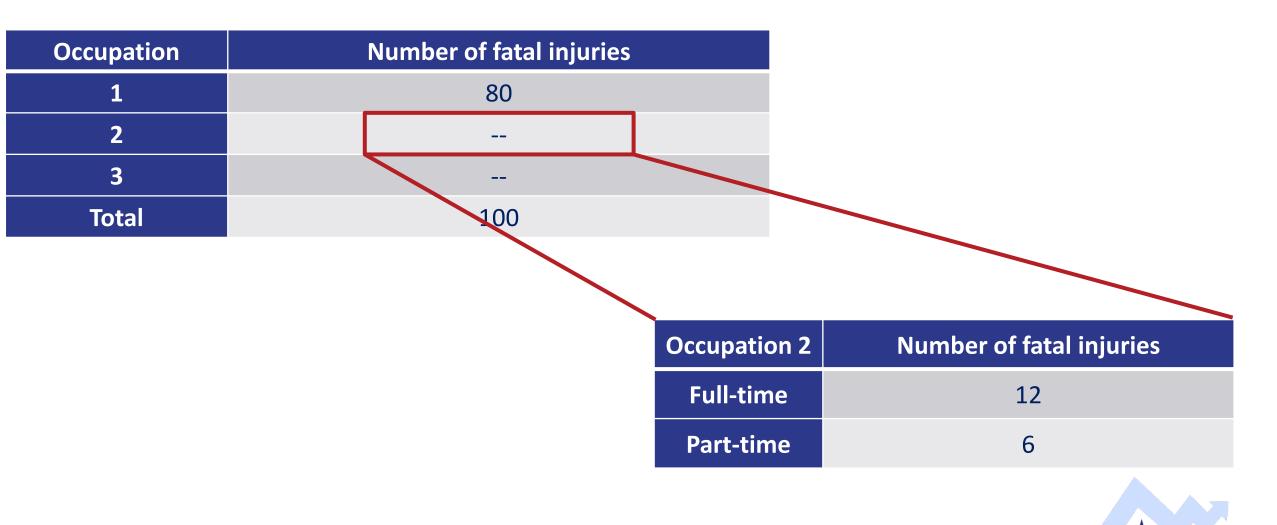


Table differencing

Occupation 2	Number of fatal injuries
Full-time	12
Part-time	6

Table differencing

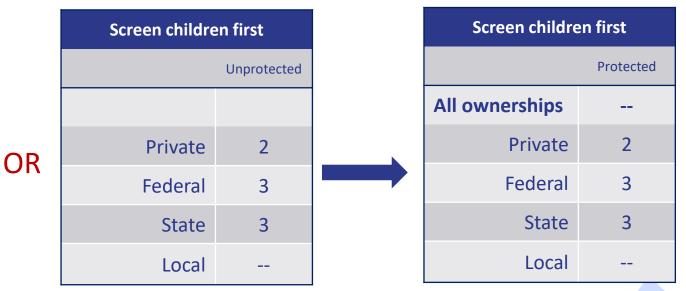
Practical considerations

- Current method: custom Hypercube approach
- We need to effectively manage disclosure risk with limited computational resources
 - ▶ 1.06 octillion (10²⁷ possible cells)
 - 117 billion are part of the publication subset
- Utility function is complex

Defining utility

Industry A	
	Unprotected data
	50
Violence	2
Transportation	8
Fires	5*
Falls	15
Harmful substances	1
Contact w/equipment	3
Exhaustion	6
Unknown	10

Contact w/equipment				
	Fatal injuries			
Contact w/equipment	30			
Industry A				
Industry B	10			
Industry C	10			
Industry D				
Industry E	5			



Changing the order of operations

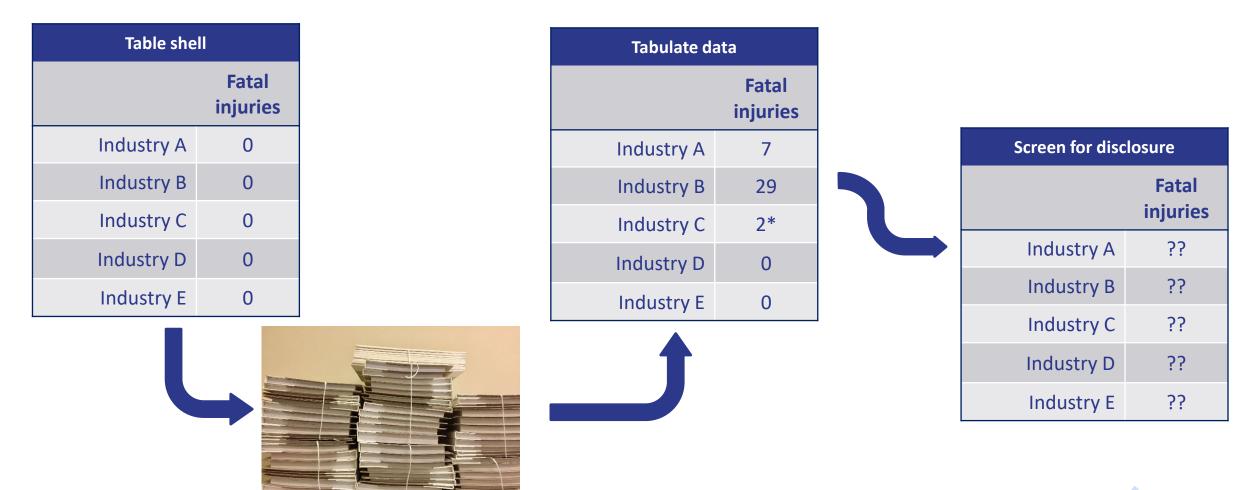
Post-processing steps

If the high-value cells aren't at the top of a hierarchy, we can screen them first and then aggregate up to the higher levels

Screen using ownership hierarchy							
Unprotected Protected							
All ownerships	10	10					
Private	2						
Federal	3	3					
State	3	3					
Local	1*						

Leveraging empty cells

	All Events	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Industry A	21	4		8		4	
Industry A-1	7					1	
Industry A-2	12			3		3	
Industry A-3	2						


BLS

Leveraging empty cells

	All Events	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Industry A	21	4		8	0	4	
Industry A-1	7				0	1	
Industry A-2	12			3	0	3	
Industry A-3	2		0		0	0	

CFOI tabulation and review

CFOI tabulation and review

Tabulate case	data	Generate emp	ty cells	Screen for disc	losure
Total	40	Total	40	Total	40
Industry A	10	Industry A	10	Industry A	
Industry B	28	Industry B	28	Industry B	28
Industry C	2*	Industry C	2*	Industry C	

CFOI tabulation and review

Generate empty cells

Total

Industry A

Industry B

Industry C

Industry D

Industry E

40

10

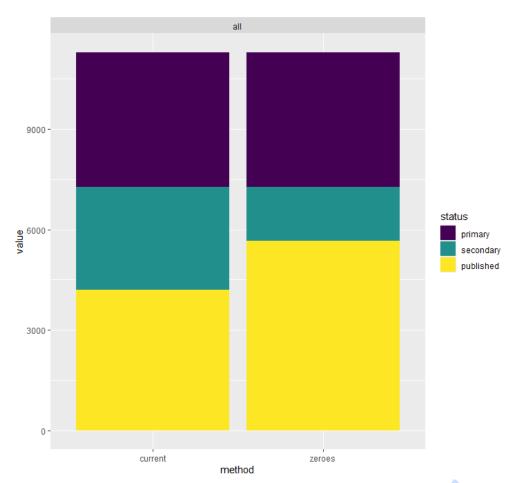
28

2*

0

0

Screen for disclosure				
Total	40			
Industry A	10			
Industry B	28			
Industry C				
Industry D				
Industry E	0			


Tabulate case data				
Total	40			
Industry A	10			
Industry B	28			
Industry C	2*			

Results: Leveraging empty cells

- Sharp increase in processing time
 48% decrease in nonzero secondary suppressions
- Among zeros, 89% published
 - 90,000 zeroes added to dataset compared to ~20,000 nonzero cells

Summary and future work

- Cell suppression algorithms are flexible
 - But, tweaks must be carefully evaluated
- Leveraging zeroes during disclosure screening greatly reduces secondary suppressions
 - But, generating zeroes sharply increases the size of the dataset
- Many ways to optimize for utility
 - But, utility remains ill-defined concept

Contact Information

Danny Friel Office of Compensation and Working Conditions Friel.Daniel@bls.gov

