Exploring the Potential Redesign of a Traditionally In-Person Federal Survey after Pandemic-related Mode Changes and Evolving Priorities

2024 FCSM Research and Policy Conference

Nicholas Davis, Whitney Murphy, Chrystine Tadler, Nathaniel Poland

October 23, 2024

MCBS Introduction

- The Medicare Current Beneficiary Survey (MCBS):
 - A nationally representative survey of the Medicare population conducted by the Centers for Medicare & Medicaid Services (CMS) through a contract with NORC at the University of Chicago (NORC)
 - Surveys beneficiaries longitudinally, at three points per year for four consecutive years
 - In addition to traditional survey question items, collects healthcare utilization and cost data to obtain a complete picture of beneficiaries' usage of services and all sources of payment, including out of pocket
 - Since inception, has used a three-stage geographically clustered sampling design developed for in-person interviewing
 - includes oversample of Hispanic beneficiaries
 - Since pandemic, has completed a majority of interviews by telephone and is currently multi-mode

Purpose

- Explore alternative sampling frames and sample designs for the MCBS
 - Acknowledge recent shifts in response rates and interview modalities
 - Assess the need for a geographically clustered design and the viability of non-clustered designs
 - React to emerging analytic priorities and anticipated challenges
 - Inform future decision-making; current research is exploratory

ſ	
	Q
	~ -
	<u>× –)</u>

Motivation and Goals

Motivation

- Increasing interest in oversampling subpopulations
- Ongoing efforts to reduce the cost of conducting large surveys

A redesigned MCBS sample should...

- Reduce the limitations of MCBS geography to allow more oversampling
- Save money by reducing interview cost per complete
- Increase or maintain precision levels, possibly allowing for more granular estimation (e.g., state/region-level estimates, robust subpopulation estimates)

Research Phases

Phase 1 Research Areas

- Review existing national telephone surveys
- National- and state-level yield rates
- Precision requirements for outcomes and domains of interest
- Stratification options and impacts on precision
- Suitability of current sampling frame (a 5% extract of Medicare enrollment database)
- Implications for national- and state-level estimation
- Variance estimation

Estimating National and State-Level Yield Rates (Phase 1)

- Inputs
 - 2020-2021 MCBS national- and state-level response rates (not representative of every state)
 - 2020-2021 MCBS telephone matching and contact success rates
 - National Immunization Survey Adult COVID interview relative performance by state (to fill in gaps)
- Output
 - Estimated state-level response rates for first interview under a national telephone design
 - Not adjusted for potential efficiency gains from having dedicated telephone interviewers

Domains and Precision (Phase 1)

- Domains of interest: age group, sex, race/ethnicity, education, region, metro/non-metro, income, disability status, plan type (FFS, Medicare Advantage), dually eligible status
- Defining precision:
 - Assess sample designs based on ability to achieve a target coefficient of variation (CV) for a 50% estimate: CV = 5%, CV = 6%, and CV = 7%
 - *CV* = (standard error of estimate) / (mean of estimate)
 - For example, to achieve a CV of 5% on a 50% mean estimate, the standard error must be $\leq 2.5\%$
- Precision goals:
 - For all designs, meet the criterion in all domains of interest nationally
 - For state-level designs, meet the criterion for the state overall (not within subpopulations)

Stratification and Substratification Options (Phase 1)

- National-level with existing stratification: 7 age groups (*Age7*) by Hispanicity (*Hisp*), for 14 strata
- State-level stratification with varying substratification options:
 - 7-level age (*Age7*; <45, 45-64, 65-69, 70-74, 75-79, 80-84, 85+)
 - 5-level age (*Age5*; <45, 45-64, 65-74, 75-84, 85+)
 - 3-level age (*Age3*; <65, 65-84, 85+)
 - 2-level age (*Age2*; <65, 65+)
 - Hispanicity (*Hisp*)
 - 2-level age x Hispanicity (*Age2x Hisp*)
 - None (state-level only)

Summary Figures (Phase 1)

Primary Stratification	Sub- stratification	Precision Criteria (CV on a 50% Est.)	State-Level Annual Completes	Total Annual Completes	State-Level Est. Design Effect	National Est. Design Effect	Meet CV in All Domains of Interest?
National	Age7 x Hisp	5	n/a	14,200	n/a	1.52	Yes
State	Age7	7	306	15,599	1.50	3.07	Yes
State	Age5	7	302	15,381	1.48	3.97	No
State	Age2 x Hisp	7	278	14,168	1.36	5.63	No
State	Age3	7	300	14,142	1.36	4.29	No
State	Age2	7	275	14,020	1.36	3.69	No
State	Hisp	7	274	13,974	1.35	3.64	No
State	none	7	271	13,842	1.33	2.43	Yes

Phase 2 Research Areas

- Direct oversampling for distinct race and ethnicity subpopulations
- Geographical stratification for joint oversampling of minority populations
- Extension to smaller geographically-concentrated populations (e.g., Cuban-American beneficiaries)
- Impacts on precision
- Assessment of sample availability

Direct Oversampling (Phase 2)

- Medicare Enrollment Database contains indicators of race and ethnicity, which can be used to set up sampling strata
- Currently used to oversample Hispanic beneficiaries
- Simultaneous direct oversampling of Hispanic, Black, and Asian beneficiaries is possible from the perspective of sample availability
- Disadvantages:
 - Too many sampling strata
 - Less precise estimates when combining subpopulations
 - Difficult for sample release and monitoring
 - More difficult to implement along with state-level stratification

Geographical Oversampling

- Divide nation into two strata geographically those with a relatively large number of Hispanic, Black, and/or Asian beneficiaries, and those without
- Oversample in the set of geographies with more non-white representation
- Advantages:
 - May achieve similar results as direct oversampling with only two strata
 - Less reduction in precision of estimates
 - Easier to implement and monitor

Geographical Oversampling Example

- Tested Census tract-based creation of two national sampling strata based on representation of Hispanic, Black, and Asian beneficiaries relative to nation as a whole
 - Oversample tracts includes those with:
 - Any 1 subpopulation with overrepresentation $\geq x$;
 - Any 2 subpopulations with overrepresentation \geq y; or
 - All 3 subpopulations with overrepresentation $\geq z$
 - Non-oversample tracts: all others
 - Example:

Oversample?	Non- Hispanic White	Hispanic	Non-Hispanic Black	Non- Hispanic Asian	Non-Hispanic Other	Total
No	90.5%	3.2%	4.0%	1.3%	1.0%	2,346,478
Yes	42.6%	20.6%	26.0%	9.1%	1.6%	1,025,432
					• / ·	

% in oversample: 30.4%

Geographical Oversampling Example

- Tested a variety of relative sampling fractions in the oversample stratum compared to non-oversampling stratum
- Simulated estimated design effects for each combination of stratification and oversampling ratio
- Calculated estimate percentage of annual completes from each subpopulation
- Example:

	Non-Hispanic		Non-Hispanic	Non-Hispanic	Non-Hispanic
Oversample?	White	Hispanic	Black	Asian	Other
No	75.9%	8.5%	10.7%	3.7%	1.2%
Yes	58.6%	14.8%	18.7%	6.5%	1.4%

Key Findings – Phase 2

- Direct oversampling is feasible but has disadvantages
- Geographical oversampling is likely a better approach and performed well in test scenarios
- Possible to overlay additional oversampling for smaller geographically-clustered subpopulations, though it is not easy to sufficiently oversample very small groups
- Trade-off between oversampling for race and ethnicity and state-level estimation:
 - State-stratified designs do not allow for sufficient oversampling
 - Geographical oversampling cannot be replicated in many states

Phase 3 Research

- Some in-person interviewing would likely remain to address considerations around data quality, response rates, questionnaire sections that are necessary or easier to collect in-person, and speech, hearing, or language difficulties over the telephone
- Dual-frame design
 - A national telephone frame plus an in-person frame using the current MCBS geographies
 - In-person frame would provide a data quality subsample for assessment and validation
 - In-person completes could be priority donors for imputation
- National single-frame design with in-person support
 - Strategically place interviewers who can travel to assist in gaining cooperation and/or completing interviews as needed
 - Requires optimization of interviewer dispersal compared to sample cases

Less Disruptive Options

- Not a total redesign, but could address sample exhaustion and certainty selections by modifying MCBS secondary sampling units (SSUs)
- Determined that doubling the annual sampling extract from 5% to 10% would be most effective and least disruptive method to expand sample availability
 - Solved problem of exhausted sample, reduced certainty selections, and improved precision slightly
 - Would not be enough to allow significant new oversampling, but could modestly increase capacity

Discussion

- A national telephone survey with status quo stratification (Age7 x Hisp) is feasible and would likely:
 - Achieve similar or better precision vs. current design;
 - Allow for significantly more oversampling; and
 - Potentially bring cost savings
- Achieving good precision for almost all domains of interest appears possible
- A number of state-level substratification options are feasible, but having too many strata poses challenges to sample monitoring and variance estimation
- Trade-off between state-level representation and national-level precision
- Trade-off between state-level stratification and oversampling for race and ethnicity (Small Area Estimation for states may help)

Thank you!

