

A Semi-Supervised Active Learning Approach for Block-Status Classification.

*No Title-13 data is included in the presentation or the project.

хD
<u>xd.gov</u>

10.6.24

Atul Rawal, Ph.D. James McCoy, Ph.D. Elvis Martinez Drew Duvall

Outline

- Goal
- Data
 - o Data Engineering
 - Class Balancing
- Machine Learning
 - Supervised Learning
 - Semi-Supervised Learning
- Explainable AI
- Challenges
- Summary

xD Overview

X

xD is an emerging technologies group that's advancing the delivery of data-driven services through new and transformative technologies.

Responsible AI (RAI)

- AI/ML for labeling & classification of geographic data saving ~800,000 hours of manual labeling
- XAI & Causal learning for bias identification in geographic data
- Model Card Generator & AI Register
- Bias Toolkit

Privacy-Enhancing Technologies (PETs)

- UN Pilot for Secure Multi Party Computation
- Remote execution and Federated Learning
- Inter-Agency Multi Party Computation

Incubation & Transformation

- Developer Experience at Census
- Bias in Infrastructure
- DAO for Equitable Government participation
- Privacy Preserving Record Linkage for Health

Develop a machine learning pipeline to improve both data labeling and classification of parcel data to enable new data-driven insight while reducing costs and effort for data assessment.

*No Title-13 data is included in the presentation or the project.

- Census Bureau's Intelligence Database (ID)
 - ~40K labelled blocks
 - >8,000,000 unlabeled blocks.
 - Multi-class
 - Passive
 - Over-coverage
 - Under-coverage

Data Curiosity

The original dataset is heavily imbalanced towards the passive class.

Using SMOTE and K-Means for data balancing

Binary Vs Multi-Class

Binary

Multi Class

- A = Active
- P = Passive
- O = Over-coverage
- U = Under-coverage

Let's do Machine Learning

Supervised Learning - Unbalanced

Supervised Learning - Undersampling

Supervised Learning - Oversampling

		Madal	Accuracy		Precision		Recall		F1-Score				
0.85 - 0.80 -		Accuracy for different machine learning algorithms	Multi	Bina	ıry ₀	1 850 -	Iulti	Binary	Multi	for different m	achine learning	algorithms Binary _o °	_ =
		Logistic Regression	0.5501	0.69	370 0	825 - 800 9	.64	0.71	0.64	0.73	0.64	0.71	
- 0.70 - 0.70		Light Gradient Boosting	0.8261	0.84	Crossmal Acci	.775 - .750 (0.75	0.83	0.68	0.83	0.67	0.83	
0.60 - 0.55		Gradient Boosting	0.8329	0.84	90₀	.725 - .700 C	0.7 <u>5 °</u>	_0.85	0.67	0.85	0.67	0.85	
	LR	Cat Boosting Multi-class	о.8411 са	0.84	93	С	.85	0.92	0.79	o.92 Bin	Name 0.79 Iary	LGB 0.92	CÂT
		Extreme Gradient Boosting	0.8534	0.84	70	C	.98	0.97	0.98	0.96	0.98	0.96	
		Random Forest	0.8547	0.84	42	C	.98	0.99	0.99	0.99	0.98	0.99	

Intelligence Dashboard with SL

Blue – Undercoverage

Green – Passive

Red – Overcoverage

Explainable AI (XAI)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 mean(|SHAP value|) (average impact on model output magnitud

Intelligence Dashboard with XAI

Blue – Undercoverage

Green – Passive

Red – Overcoverage

$\underline{Moving} \text{ on to SSL.}$

ONWARD FORWARDmakeagif.com

Semi-Supervised Learning

Semi-Supervised Learning

GEOID2020	STATEFP	COUNTYFP	CURSTATE	CURCOUNTY	LR	RF	GBR	XGB	LGB	САТ
121270909051056	12	127	12	127	0	0	0	0	0	0
210350101003007	21	35	21	35	1	1	1	1	1	1
211959316001030	21	195	21	195	1	1	0	1	0	1
121113816041026	12	111	12	111	1	1	1	1	1	1
120990003015011	12	99	12	99	1	1	0	1	1	1
120010009021002	12	1	12	1	1	1	1	1	1	1
50690009002007	5	69	5	69	1	1	1	1	1	1

Intelligence Dashboard with SSL

Blue – Undercoverage

Green – Passive

Red – Overcoverage

Validation Decisions.

DECISIONS DECISIONS

Validation with Passive Blocks

Validation with Passive Blocks

- 2,520,833 Blocks for SE.
 - \circ Test set = 100K
- 4,255,172 Known Passive Blocks.
- Integrated test set:
 - o 27710 known passive blocks.
 - 72290 unknown blocks.

[*]	There are 306128 90863 84811 157956 282660	matching 1.208601e 4.708907e 3.703197e 3.703501e	GE0ID2020 ++14 ++14 ++14 ++14	values	in	both	datasets.
	43209 149477 4006 117247 145335 Name: GEOI Number of	3.702100e 1.205701e 1.100101e 5.069002e 1.212709e [D2020, Le matching	+14 +14 +14 +13 +14 mgth: 2771 GEOID2020	l0, dtyp values:	oe:	floa1 7710	t64

Validation with Passive Blocks

- Out of the 27710 known passive blocks
 - Passive = 24107 (87%)
 - \circ Undercoverage = 2161 (7.80%)
 - Overcoverage = 1442 (5.20%)
- A solid validations set of 87% accuracy for the models.

- **Challenges**
 - Administrative data is messy.
 - <1% of the data is labeled.
 - Data labelling takes time.
 - A lot of time!
 - Validation for unlabeled data.

<u>Summary</u>

- Manual canvassing and labelling is cost and time ineffective.
- AI/ML can help alleviate some of the burden.
- Proof-of-concept for using AI/ML to core CB operational tasks.
 - Benefit of removal of human bias involved in interactive review.
- It showcases Census' expertise and evolution in applying AI/ML in geographic data.

Questions/Discussion

Atul Rawal, Ph.D.

Education

Albright College, B.Sc. in Theoretical Physics Joint School of Nanoscience & Nanoengineering, Ph.D. in Nanoengineering Towson University, Ph.D. in Computer Science (Fall 2024) Howard University, Ph.D. in Electrical Engineering (On Leave)

Expertise

Artificial Intelligence/Machine Learning, Explainable AI (XAI), Causal learning, Computational Biology, Molecular Dynamics (MD), Quantum Mechanics (QM), Protein Engineering/Dynamics.

<u>Hobbies</u>

Soccer, Lacrosse, Motorcycles, Hiking/Chasing waterfalls with Red. Started a journey to visit all 63 National Parks by the time I turn 40.