Generating Spatially Referenced, Differentially Private Synthetic Data Using a Poisson-lognormal Approach (a work in progress)

Harrison Quick (University of Minnesota)

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

SEARCH	۹

CDC A-7 INDEX

		GDCA ZINDLA
CDC WONDER	FAQ Help Contact Us WONDER Search	
WONDER Search	f 🔽 🛨 CDC WONDER	
	WONDER online databases utilize a rich ad-hoc query system for the analysis of pu Reports and other query systems are also available.	ublic health data.
Search	WONDER Systems Topics A-Z Index	
WONDER Info	WONDER Online Databases G Reports and References	
About CDC WONDER	AIDS Public Use Data Prevention Guidelines (Archive) Births Scientific Data and Documentation (Archive) Cancer Statistics	
What is WONDER?	Environment (Other Query Systems Heat Wave Days May-September Healthy People 2010 (Archive)	
requently Asked Questions	Daily Air Temperatures & Heat Index NNDSS Annual Tables Daily Land Surface Temperatures NNDSS Weekly Tables	
Data Use Restrictions	Daily Fine Particulate Matter Daily Sunlight	
Data Collections	Daily Precipitation Mortality	
Citations	Underlying Cause of Death	
Republishing WONDER Data	Detailed Mortality Compressed Mortality	
What's New?	Multiple cause of death (Detailed Mortality)	
	Infant Deaths (Linked Birth/Infant Death Records)	
	Fetal Deaths Online Tuberculosis Information System	

County-level heart disease-related death counts for ages 35–44 in 2016 from all races and all genders

Compressed Mortality, 1999-2016 Results							
Request Form Results Map Chart About							
Compressed Mortality Data Dataset Documentation Other Data Access Help fr	or Results Printing Tips	Help with Exports	Save Export Reset				
Quick Options Top Itotas Citation Ruery Criteria							
County 👃	🌩 <u>Deaths</u> 🛊 🖡	2 Population 🛊 🖡	🕈 Crude Rate Per 100,000 👚				
County # Autauga County, AL (01001)	Deaths Suppressed	Population 14	Crude Rate Per 100,000 Suppressed				
Autauga County, AL (01001)	Suppressed	7,190	Suppressed				
Autauga County, AL (01001) Baldwin County, AL (01003)	Suppressed 14	7,190 24,545	Suppressed 57.0 (Unreliable)				
Autauga County, AL (01001) Baldwin County, AL (01003) Barbour County, AL (01005)	Suppressed 14 Suppressed	7,190 24,545 3,171	Suppressed 57.0 (Unreliable) Suppressed				
Autauga County, AL (01001) Baldwin County, AL (01003) Barbour County, AL (01005) Bibb County, AL (01007)	Suppressed 14 Suppressed Suppressed	7,190 24,545 3,171 3,043	Suppressed 57.0 (Unreliable) Suppressed Suppressed				
Autauga County, AL (01001) Baldwin County, AL (01003) Barbour County, AL (01005) Bibb County, AL (01007) Bibount County, AL (01009)	Suppressed 14 Suppressed Suppressed Suppressed	7,190 24,545 3,171 3,043 7,090	Suppressed 57.0 (Unreliable) Suppressed Suppressed Suppressed				

All counts less than 10 are suppressed in public-use datasets

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

▶ Utility: Suppression of small counts affects users' ability to assess...

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- ▶ Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- ▶ Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities
 - Racial disparities

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- ▶ Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities
 - Racial disparities
 - Differences by sex

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities
 - Racial disparities
 - Differences by sex
 - Differences by age
- Privacy

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities
 - Racial disparities
 - Differences by sex
 - Differences by age
 - Differences by cause-of-death
- Privacy

While CDC WONDER offers a wealth of data and *does* implement privacy protections, there is still room for improvement:

- ▶ Utility: Suppression of small counts affects users' ability to assess...
 - Urban/Rural disparities
 - Racial disparities
 - Differences by sex
 - Differences by age
 - Differences by cause-of-death
- Privacy
 - Targeted attacks by clever intruders can overcome data suppression to uncover the true counts

Synthetic Data

One option to address the issue of data suppression would be to release *synthetic data*: e.g., if

- **•** $\mathbf{y} = (y_1, \dots, y_l)^T$ denotes a restricted-use dataset of l observations,
- \triangleright $p(\mathbf{y} | \phi)$ is an appropriate statistical model for \mathbf{y} with parameters ϕ , and
- $p(\phi | \psi)$ is a prior distribution for ϕ given hyperparameters, ψ , then we can generate a synthetic dataset, $\mathbf{z} = (z_1, \ldots, z_l)^T$, from the posterior predictive distribution,

$$p(\mathbf{z} | \mathbf{y}, \psi) = \int p(\mathbf{z} | \phi) p(\phi | \mathbf{y}, \psi) d\phi.$$

That is, we can sample ϕ^* from $p(\phi | \mathbf{y}, \psi)$ and then sample \mathbf{z} from $p(\mathbf{z} | \phi^*)$.

Natural next question: How do we know if synthetic data generated from p(z | y, ψ) are sufficiently protective?

Differential Privacy (Dwork, 2006)

The standard typically used for demonstrating formal privacy guarantees is the concept of *differential privacy* (Dwork, 2006).

In this context, $p(\mathbf{z} | \mathbf{y}, \psi)$ is ϵ -differentially private if for any similar¹ dataset, \mathbf{x} ,

$$\left|\log \frac{p(\mathbf{z} \mid \mathbf{y}, \psi)}{p(\mathbf{z} \mid \mathbf{x}, \psi)}\right| \le \epsilon.$$
(1)

While ψ can be viewed as a vector of model parameters, in practice the elements of ψ are merely specified to satisfy ϵ -differential privacy.

 $\|\mathbf{x} - \mathbf{y}\| = 2$ and $\sum_i x_i = \sum_i y_i$ — i.e., there exists *i* and *i'* such that $x_i = y_i - 1$ and $x_{i'} = y_{i'} + 1$ with all other values equal

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

Poisson-Gamma model (Quick, 2021)

Motivated by the field of disease mapping — where death data are typically modeled as being Poisson distributed — Quick (2021) proposed assuming

 $y_i | \lambda_i \sim \mathsf{Pois}(n_i \lambda_i) \text{ and } \lambda_i \sim \mathsf{Gamma}(a_i, b_i)$

which implies $\lambda_i | y_i \sim \text{Gamma}(y_i + a_i, n_i + b_i)$. Now recall that if the y_i are (conditionally) independent Poisson random variables and if $y_i = \sum_i y_i$, then

$$\mathbf{y} \mid \boldsymbol{\lambda}, \sum_{i} y_{i} = y_{\cdot} \sim \mathsf{Mult}\left(y_{\cdot}, \left\{\frac{n_{i}\lambda_{i}}{\sum_{j} n_{j}\lambda_{j}}\right\}\right)$$

Thus, we can generate synthetic data by:

- 1. Sampling λ_i^* from Gamma $(y_i + a_i, n_i + b_i)$ for $i = 1, \dots, I$
- 2. Sampling $\mathbf{z} \sim \text{Mult}\left(z_{\cdot}, \left\{n_i \lambda_i^* / \sum_j n_j \lambda_j^*\right\}\right)$

But under what conditions will this satisfy ϵ -differential privacy?

Poisson-Gamma model — ϵ -differential privacy

It *can* (but won't) be shown that the Poisson-gamma synthesizer, denoted $p(\mathbf{z} | \mathbf{y}, \mathbf{a}, \mathbf{b})$, will satisfy ϵ -differential privacy if

$$a_i \ge \frac{z_i}{e^{\epsilon}/\nu_i - 1}$$
 (2)

where $\nu_i \in [1, 2]$ is a function of **n**, **a**, and **b** is generally ≈ 1 when the number of observations is large. Later, Quick (2022) proposed using the prior predictive distribution to truncate the synthetic data to a "reasonable" range of values, $z_i \in [L_i, U_i]$, which yields the requirement that

$$a_i \ge \frac{U_i - L_i}{e^{\epsilon}/\nu_i - 1} - 2 * L_i, \text{ where } \nu_i = \frac{y_i - L_i + a_{(i)} + y_i - L_i - 1}{y_i - U_i + a_{(i)} + y_i - L_i - 1}.$$
 (3)

e.g., if $n_i = 100$ and I expect $\lambda_i \approx 0.01$ — and thus I expect $y_i \approx 100 \times 0.01 = 1$ — then it's probably fair to assume that $y_i \in [0, 20]$ even if $\sum_i y_i = 10,000$.

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

BYM CAR model framework

Rather than smooth all observations toward a common rate, we'd like to take a page from the spatial statistics and disease mapping literature and consider the conditional autoregressive (CAR) model framework of Besag, York, and Mollié (BYM; 1991), which assumes:

$$\begin{split} y_i \, | \, \lambda_i &\sim \mathsf{Pois} \left(n_i \lambda_i \right) \\ \log \lambda_i \, | \, \beta_0, \mathbf{z}, \tau^2 &\sim \mathsf{Norm} \left(\beta_0 + z_i, \tau^2 \right) \\ \mathbf{z} \, | \, \sigma^2 &\sim \mathsf{CAR} \left(\sigma^2 \right), \end{split}$$

where $\mathbf{z} \sim \mathsf{CAR}\left(\sigma^2\right)$ implies

$$z_i \mid \mathbf{z}_{(i)}, \sigma^2 \sim \operatorname{Norm}\left(\sum_{j \sim i} z_j / m_i, \sigma^2 / m_i\right)$$

where $j \sim i$ indicates that counties *i* and *j* are neighbors and m_i denotes the number of counties that neighbor county *i*.

Quantifying the informativeness of the BYM CAR model

While the CAR model framework is nice, it's not straightforward to quantify how informative the model is (relative to the gamma prior in the previous framework). To that end, recent work by Quick et al. (2021; *SSTE*) started by establishing a relationship between $\lambda_i \sim \text{Gamma}(a_i, b_i)$ and $\lambda_i \sim \text{LogNorm}(\mu_i, \sigma_i^2)$, which yielded an approximation of the form:

$$\widehat{a}_i = \frac{1}{\exp \sigma_i^2 - 1}.\tag{4}$$

Quick et al. (2021) then extended this concept to the BYM CAR model for a region with m_0 neighbors by integrating the CAR random effects out of the model, yielding:

$$\widehat{a}_{0} = \frac{1}{\exp\left[\tau^{2} + (\sigma^{2} + \tau^{2})/m_{0}\right] - 1}.$$
(5)

Because each region can have its own number of neighbors — and to facilitate comparisons between different maps — we write \hat{a}_0 using $m_0 = 3$ as a rule-of-thumb.

Comparing the Poisson-Gamma and Poisson-Lognormal

To help establish the model informativeness calculation for the Poisson-lognormal framework (and, by extension, the BYM CAR model), Quick et al. (2021) proposed the use of the *relative precision*, which is defined as:

$$\mathsf{RP}(\lambda_i \,|\, \mathbf{y}) = \frac{\mathsf{Posterior Median of } \lambda_i}{\mathsf{Width of the 95\% CI for } \lambda_i}$$

- Under the Poisson-gamma model, the relative precision is simply a function of y + a
- Under the Poisson-lognormal, the relative precision is a function of both y + â and the discrepancy between the observed y and E [y | μ, σ²]

Hand-wavy Differential Privacy

Based on this, I'm claiming that the Poisson-lognormal framework approximately satisfies ϵ -differential privacy if a Poisson-gamma framework with $a_i \leq \hat{a}_0$ for all i would satisfy ϵ -differential privacy.

Note: This is in no way related to any other "approximate differential privacy" definition that I'm aware of. I'm essentially claiming there's a "transitive property" of differential privacy.

Why do I expect this to be an attractive strategy?

- The aforementioned Quick et al. (2021) demonstrates that the BYM CAR model framework tends to produce very informative models.
 - Quick et al. (2021) criticized this as oversmoothing, but this is actually ideal for privacy because it should provide yield improved utility (smoothing toward regional averages rather than state-level or national averages) and improved privacy protections (typical levels of smoothing can correspond to *e* ≈ 1).

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

CVD-related Deaths in Minnesota Census Tracts in 2011

Attribute	Levels
Census Tract	$i=1,\ldots,1,336$ Census tracts in Minnesota
	$a=1,\ldots,12$ Levels
Age	Ages 30–34; Ages 35–39; Ages 40–44; Ages 45–49; Ages 50–54; Ages 55–59;
	Ages 60-64; Ages 65-69; Ages 70-74; Ages 75-79; Ages 80-84; Ages 85 and older

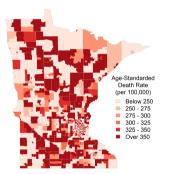
In total, there were $y_{.} = \sum_{ia} y_{ia} = 4,187$ CVD-related deaths for white men in MN in 2011 belonging to these $1,336 \times 12 = 16,032$ strata.

- We have data for other demographic groups, other causes-of-death, and other years, but I tried to keep it simple as a "proof-of-concept".
- Over 80% of the death counts are zero and the largest value is $y_{ia} = 9$

Prior information

- Both models take advantage of tract-level population estimates commissioned by the National Cancer Institute's (NCI's) Surveillance, Epidemiology, and End Results (SEER) program.
- The Poisson-gamma model's prior distributions are designed to smooth toward overall age-specific death rates
 - I cheat in this example by using MN's 2011 state-level death rates, but I typically use national-level rates published annually by the CDC in practice, this shouldn't make much of a difference.
- ► The variance parameters in the BYM-CAR model are fixed such that \hat{a}_0 matches the requirement for ϵ -differential privacy under the P-G framework, but no external information is used to inform any model parameters.
- Most importantly, my goal will be to estimate urban/rural disparities in age-standardized death rates, and neither model accounts for anything about urban/rural disparities.

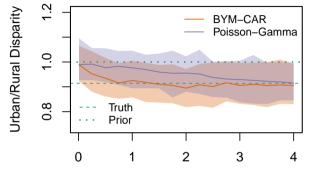
Tract-level Age-Standardized CVD Death Rates



(a) True Rates (b) BYM CAR Model (c) Poisson-Gamma

Figure 1: Degradation in utility for the age-standardized rates as ϵ decreases.

Urban/Rural Disparities in Age-Standardized CVD Death Rates



Privacy Budget (ϵ)

- For large \(\epsilon\), both models preserve the urban/rural disparity in age-standardized CVD death rates by virtue of noninformative priors
- As ϵ decreases, the BYM CAR model still preserves geographic (and urban/rural) disparities, whereas the gamma prior does not.

Motivating Use-Case: CDC WONDER

Generating Differentially Private Synthetic Data

Extension to Disease Mapping Methods

Illustrative Example: Cardiovascular Disease Mortality in Minnesota

Summary

Key background:

- The Poisson-gamma model can produce differentially private synthetic data (Quick, 2021; 2022)
- Past work has established a relationship between the informativeness of the prior specification in the Poisson-gamma framework and that of the Poisson-lognormal (and, by extension, the BYM-CAR model; Quick et al., 2021)

Key claim:

► A BYM-CAR model whose informativeness matches a Poisson-gamma model that satisfies *e*-differential privacy will *approximately* satisfy *e*-differential privacy

Key results:

The BYM-CAR model preserves geographic and urban/rural disparities even for small ε, whereas the Poisson-gamma framework gradually shifts from the true disparity toward no disparity.