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CDC WONDER



CDC WONDER

County-level heart disease-related death counts for ages 35–44 in 2016 from all races
and all genders

All counts less than 10 are suppressed in public-use datasets



CDC WONDER

While CDC WONDER offers a wealth of data and does implement privacy protections,
there is still room for improvement:
▶ Utility: Suppression of small counts affects users’ ability to assess...

▶ Urban/Rural disparities
▶ Racial disparities
▶ Differences by sex
▶ Differences by age
▶ Differences by cause-of-death

▶ Privacy

▶ Targeted attacks by clever intruders can overcome data suppression to uncover the
true counts

Is there a way that CDC can address these issues?
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Synthetic Data

One option to address the issue of data suppression would be to release synthetic data:
e.g., if

▶ y = (y1, . . . , yI )
T denotes a restricted-use dataset of I observations,

▶ p (y |ϕ) is an appropriate statistical model for y with parameters ϕ, and

▶ p (ϕ |ψ) is a prior distribution for ϕ given hyperparameters, ψ,

then we can generate a synthetic dataset, z = (z1, . . . , zI )
T , from the posterior

predictive distribution,

p (z | y,ψ) =
∫

p (z |ϕ) p (ϕ | y,ψ) dϕ.

That is, we can sample ϕ∗ from p (ϕ | y,ψ) and then sample z from p (z |ϕ∗).

▶ Natural next question: How do we know if synthetic data generated from
p (z | y,ψ) are sufficiently protective?



Differential Privacy (Dwork, 2006)

The standard typically used for demonstrating formal privacy guarantees is the concept
of differential privacy (Dwork, 2006).
In this context, p (z | y,ψ) is ϵ-differentially private if for any similar1 dataset, x,∣∣∣∣log p (z | y,ψ)

p (z | x,ψ)

∣∣∣∣ ≤ ϵ. (1)

While ψ can be viewed as a vector of model parameters, in practice the elements of ψ
are merely specified to satisfy ϵ-differential privacy.

1∥x− y∥ = 2 and
∑

i xi =
∑

i yi — i.e., there exists i and i ′ such that xi = yi − 1 and xi′ = yi′ + 1
with all other values equal
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Poisson-Gamma model (Quick, 2021)

Motivated by the field of disease mapping — where death data are typically modeled
as being Poisson distributed — Quick (2021) proposed assuming

yi |λi ∼ Pois (niλi ) and λi ∼ Gamma (ai , bi )

which implies λi | yi ∼ Gamma (yi + ai , ni + bi ). Now recall that if the yi are
(conditionally) independent Poisson random variables and if y· =

∑
i yi , then

y |λ,
∑
i

yi = y· ∼ Mult

(
y·,

{
niλi∑
j njλj

})

Thus, we can generate synthetic data by:

1. Sampling λ∗
i from Gamma (yi + ai , ni + bi ) for i = 1, . . . , I

2. Sampling z ∼ Mult
(
z·,
{
niλ

∗
i /
∑

j njλ
∗
j

})
But under what conditions will this satisfy ϵ-differential privacy?



Poisson-Gamma model — ϵ-differential privacy

It can (but won’t) be shown that the Poisson-gamma synthesizer, denoted
p (z | y, a,b), will satisfy ϵ-differential privacy if

ai ≥
z·

eϵ/νi − 1
(2)

where νi ∈ [1, 2] is a function of n, a, and b is generally ≈ 1 when the number of
observations is large. Later, Quick (2022) proposed using the prior predictive
distribution to truncate the synthetic data to a “reasonable” range of values,
zi ∈ [Li ,Ui ], which yields the requirement that

ai ≥
Ui − Li
eϵ/νi − 1

− 2 ∗ Li , where νi =
y· − Li + a(i) + y· − Li − 1

y· − Ui + a(i) + y· − Li − 1
. (3)

e.g., if ni = 100 and I expect λi ≈ 0.01 — and thus I expect yi ≈ 100× 0.01 = 1 —
then it’s probably fair to assume that yi ∈ [0, 20] even if

∑
i yi = 10,000.
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BYM CAR model framework
Rather than smooth all observations toward a common rate, we’d like to take a page
from the spatial statistics and disease mapping literature and consider the conditional
autoregressive (CAR) model framework of Besag, York, and Mollié (BYM; 1991),
which assumes:

yi |λi ∼ Pois (niλi )

log λi |β0, z, τ2 ∼ Norm
(
β0 + zi , τ

2
)

z |σ2 ∼ CAR
(
σ2
)
,

where z ∼ CAR
(
σ2
)
implies

zi | z(i), σ2 ∼ Norm

∑
j∼i

zj/mi , σ
2/mi

 ,

where j ∼ i indicates that counties i and j are neighbors and mi denotes the number
of counties that neighbor county i .



Quantifying the informativeness of the BYM CAR model

While the CAR model framework is nice, it’s not straightforward to quantify how
informative the model is (relative to the gamma prior in the previous framework). To
that end, recent work by Quick et al. (2021; SSTE) started by establishing a
relationship between λi ∼ Gamma (ai , bi ) and λi ∼ LogNorm

(
µi , σ

2
i

)
, which yielded

an approximation of the form:

âi =
1

expσ2
i − 1

. (4)

Quick et al. (2021) then extended this concept to the BYM CAR model for a region
with m0 neighbors by integrating the CAR random effects out of the model, yielding:

â0 =
1

exp [τ2 + (σ2 + τ2) /m0]− 1
. (5)

Because each region can have its own number of neighbors — and to facilitate
comparisons between different maps — we write â0 using m0 = 3 as a rule-of-thumb.

https://doi.org/10.1016/j.sste.2021.100420


Comparing the Poisson-Gamma and Poisson-Lognormal
To help establish the model informativeness calculation for the Poisson-lognormal
framework (and, by extension, the BYM CAR model), Quick et al. (2021) proposed
the use of the relative precision, which is defined as:

RP (λi | y) =
Posterior Median of λi

Width of the 95% CI for λi

▶ Under the Poisson-gamma model, the
relative precision is simply a function
of y + a

▶ Under the Poisson-lognormal, the
relative precision is a function of both
y + â and the discrepancy between the
observed y and E

[
y |µ, σ2

]



Hand-wavy Differential Privacy

Based on this, I’m claiming that the Poisson-lognormal framework approximately
satisfies ϵ-differential privacy if a Poisson-gamma framework with ai ≤ â0 for all i
would satisfy ϵ-differential privacy.

▶ Note: This is in no way related to any other “approximate differential privacy”
definition that I’m aware of. I’m essentially claiming there’s a “transitive
property” of differential privacy.

Why do I expect this to be an attractive strategy?
▶ The aforementioned Quick et al. (2021) demonstrates that the BYM CAR model

framework tends to produce very informative models.
▶ Quick et al. (2021) criticized this as oversmoothing, but this is actually ideal for

privacy because it should provide yield improved utility (smoothing toward regional
averages rather than state-level or national averages) and improved privacy
protections (typical levels of smoothing can correspond to ϵ ≈ 1).
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CVD-related Deaths in Minnesota Census Tracts in 2011

Attribute Levels
Census Tract i = 1, . . . , 1,336 Census tracts in Minnesota

Age
a = 1, . . . , 12 Levels

Ages 30–34; Ages 35–39; Ages 40–44; Ages 45–49; Ages 50–54; Ages 55–59;
Ages 60–64; Ages 65–69; Ages 70–74; Ages 75–79; Ages 80–84; Ages 85 and older

In total, there were y· =
∑

ia yia = 4,187 CVD-related deaths for white men in MN in
2011 belonging to these 1,336× 12 = 16,032 strata.

▶ We have data for other demographic groups, other causes-of-death, and other
years, but I tried to keep it simple as a “proof-of-concept”.

▶ Over 80% of the death counts are zero and the largest value is yia = 9



Prior information

▶ Both models take advantage of tract-level population estimates commissioned by
the National Cancer Institute’s (NCI’s) Surveillance, Epidemiology, and End
Results (SEER) program.

▶ The Poisson-gamma model’s prior distributions are designed to smooth toward
overall age-specific death rates
▶ I cheat in this example by using MN’s 2011 state-level death rates, but I typically

use national-level rates published annually by the CDC — in practice, this shouldn’t
make much of a difference.

▶ The variance parameters in the BYM-CAR model are fixed such that â0 matches
the requirement for ϵ-differential privacy under the P-G framework, but no
external information is used to inform any model parameters.

▶ Most importantly, my goal will be to estimate urban/rural disparities in
age-standardized death rates, and neither model accounts for anything about
urban/rural disparities.



Tract-level Age-Standardized CVD Death Rates

(a) True Rates (b) BYM CAR Model (c) Poisson-Gamma

Figure 1: Degradation in utility for the age-standardized rates as ϵ decreases.



Urban/Rural Disparities in Age-Standardized CVD Death Rates
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▶ For large ϵ, both models preserve the urban/rural disparity in age-standardized
CVD death rates by virtue of noninformative priors

▶ As ϵ decreases, the BYM CAR model still preserves geographic (and urban/rural)
disparities, whereas the gamma prior does not.
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Summary

Key background:

▶ The Poisson-gamma model can produce differentially private synthetic data
(Quick, 2021; 2022)

▶ Past work has established a relationship between the informativeness of the prior
specification in the Poisson-gamma framework and that of the Poisson-lognormal
(and, by extension, the BYM-CAR model; Quick et al., 2021)

Key claim:

▶ A BYM-CAR model whose informativeness matches a Poisson-gamma model that
satisfies ϵ-differential privacy will approximately satisfy ϵ-differential privacy

Key results:

▶ The BYM-CAR model preserves geographic and urban/rural disparities even for
small ϵ, whereas the Poisson-gamma framework gradually shifts from the true
disparity toward no disparity.
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