Mechanisms for Global Differential Privacy under Bayesian Data Synthesis

Terrance D. Savitsky ¹ Matthew R. Williams ² Monika (Jingchen) Hu ³

¹ U.S. Bureau of Labor Statistics (Office of Survey Methods Research)

²RTI International

³Vassar College (Mathematics and Statistics Department)

FCSM Conference, October 23, 2024

Background

Five microdata synthesizers

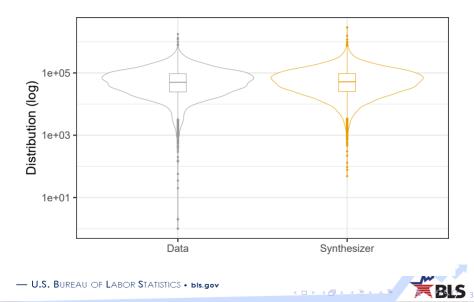
Simulation study and SDR application

Application

Concluding remarks

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Replicate data \mathbf{x}^* given (|) observed data, \mathbf{x} (Hu, 2019)



Differential Privacy under $\mathcal{M} = \xi(\theta \mid \mathbf{x})$ (Dimitrakakis et al., 2017)

$$\sup_{\mathbf{x},\mathbf{x}'\in\mathcal{X}^n:\delta(\mathbf{x},\mathbf{x}')=1}\sup_{B\in\beta_{\Theta}}\frac{\boldsymbol{\xi}(B\mid\mathbf{x})}{\boldsymbol{\xi}(B\mid\mathbf{x}')}\leq e^{\epsilon},$$

- ϵ bounds the **change** in the probability measure ξ
 - from the inclusion of a single record $\delta(\mathbf{x}, \mathbf{x}') = 1$,
 - over all possible outcomes, B ∈ β_Θ sets in the space of measurable sets of Θ.

• over all possible data sets $\mathbf{x}, \mathbf{x}' \in \mathcal{X}^n$ of size n.

Background

Five microdata synthesizers

Simulation study and SDR application

Application

Concluding remarks

Synthesizer #1: Weighted pseudo posterior (Savitsky et al., 2022)

 \blacktriangleright The mechanism ${\cal M}$ is the pseudo posterior:

$$\xi^{\boldsymbol{\alpha}(\boldsymbol{y})}(\theta \mid \boldsymbol{x}) \propto \prod_{i=1}^{n} p(x_i \mid \theta)^{\alpha_i} \times \xi(\theta)$$
(1)

- \blacktriangleright Fit any Bayesian synthesizer to confidential data x
- Formulate privacy weight α_i and estimate a pseudo posterior
 - Downweight each likelihood by $lpha_i \in [0,1]$
 - Higher disclosure risk, lower $lpha_i$
- Calculate Lipschitz where $f_{\theta}(\boldsymbol{x})$ is the log-likelihood:

$$\sup_{\mathbf{x},\mathbf{x}'\in\mathcal{X}^n:\delta(\mathbf{x},\mathbf{x}')=1}\sup_{\theta\in\Theta}|\alpha(\mathbf{x})f_{\theta}(\mathbf{x})-\alpha(\mathbf{x}')f_{\theta}(\mathbf{x}')|\leq\Delta_{\alpha}$$

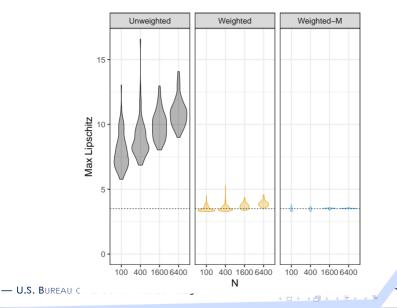
 $\max_{i \in 1, \dots, n} \sup_{\theta \in \Theta} |\alpha_i \times f_\theta(x_i)| \le \Delta_{\alpha, \mathbf{x}}$

• Each posterior draw with $\epsilon_{x} = 2\Delta_{\alpha,x}$ produces one synthetic x- U.S. BUREAU OF LABOR STATISTICS • **bis.gov** Synthesizer #2: Weighted-e pseudo posterior (Savitsky et al., 2022)

- \blacktriangleright In addition to the observation-indexed privacy weight α_i in Weighted
- Savitsky et al. (2022) introduce a truncation of each weight: If a record's log-likelihood contribution > ε/2, set final weight α^{*}_i = 0

- Truncation induces a rapid contraction of ϵ_x to global ϵ
- As with the Weighted, Weighted-e also achieves aDP

Asymptotic Differential Privacy



Weighted-e Produces Slightly Worse Utility

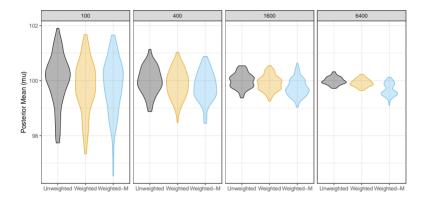


Figure: Distributions of the average of mean parameter μ for each of sample size (100, 400, 1600, 6400) from R = 100 realizations.

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Synthesizers #3 & #4: Censored (likelihood)

 \blacktriangleright Censor the log-likelihood at a target threshold, $\epsilon/2$

$$p_c^{\boldsymbol{\alpha}}(x_i \mid \boldsymbol{\theta}) = \begin{cases} \exp(\epsilon/2), & p(x_i \mid \boldsymbol{\theta})^{\boldsymbol{\alpha}} > \exp(\epsilon/2), \\ \exp(-\epsilon/2), & p(x_i \mid \boldsymbol{\theta})^{\boldsymbol{\alpha}} < \exp(-\epsilon/2), \\ p(x_i \mid \boldsymbol{\theta})^{\boldsymbol{\alpha}}, & \text{otherwise}, \end{cases}$$

for use in

$$\xi_c^{\boldsymbol{\alpha}}(\theta \mid \mathbf{x}) \propto \prod_{i=1}^n p_c^{\boldsymbol{\alpha}}(x_i \mid \theta) \xi(\theta),$$

- Embeds weights inside the censoring mechanism; labeled as Censor_w and it achieves DP (Hu et al., 2022)
- Censored unweighted (posterior) the censoring mechanism; labeled as Censor_uw and it achieves DP
- Censoring offers a practical, low-dimensional alternative to <u>utruncating the parameter space</u> to achieve DP

Synthesizer #5: Perturbed histogram (Wasserman and Zhou, 2010)

- Under the assumption of a bounded and continuous univariate variable
 - 1. Discretize it into a histogram with a selected number of bins

- 2. Adding Laplace noise to the histogram to achieve DP
- 3. Simulate microdata from the private histogram under DP
- Labeled as PH and it achieves DP if bounded data

Background

Five microdata synthesizers

Simulation study and SDR application

Application

Concluding remarks

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Simulation design

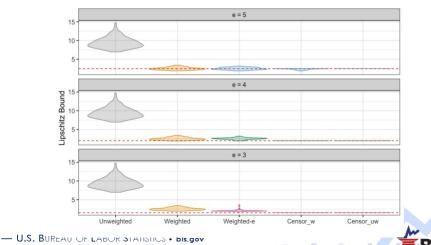
- Monte Carlo simulation under repeated sampling
- ▶ For r = 1, · · · , R = 100, simulate a local database x_r of size n = 2000 from Beta(0.5, 3)
- For each local database x_r, we fit and create a synthetic dataset for each of the synthesizers

- 1. Weighted: asymptotic DP (aDP)
- 2. Weighted-e: aDP with faster convergence
- 3. Censor_w: DP
- 4. Censor_uw: DP
- 5. Perturbed histogram: DP if bounded data
- We experiment with $\epsilon \in \{5, 4, 3\}$

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

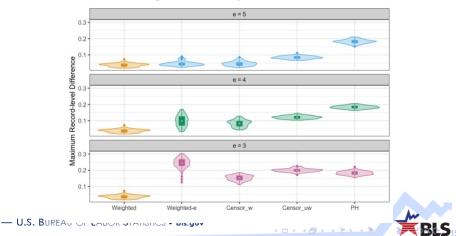
Simulation: privacy comparison results

- ▶ Violin plots of Lipschitz bounds over R = 100 replicates
- \blacktriangleright A dashed horizontal line at $\epsilon/2$ is included in each panel



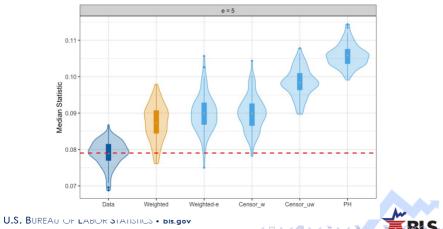
Simulation: global utility comparison results

- \blacktriangleright Violin plots of ECDF utility maximum record-level difference over $R=100~{\rm replicates}$
- Smaller the ECDF, higher the utility



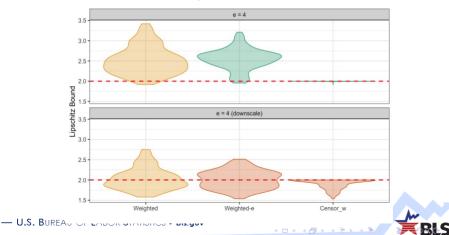
Simulation: analysis-specific utility comparison results

- ▶ Violin plots of median over R = 100 replicates at $\epsilon = 5$
- A dashed horizontal line at the analytical median from Beta(0.5, 3) is included



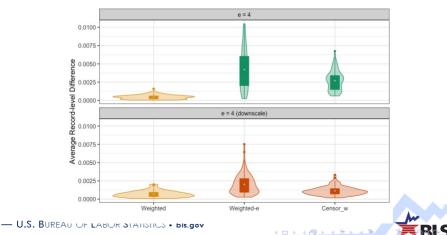
Fine tuning with downscaling - $\tilde{\alpha}_i = c_1 \times \alpha_i, \ c_1 < 1$

- ▶ Violin plots of Lipschitz bounds over R = 100 replicates without downscaling (top) and with downscaling (bottom) at $\epsilon = 4$
- ▶ A dashed horizontal line at $\epsilon/2$ is included



Improved utility with downscaling

▶ Violin plots of ECDF utility - average record-level squared difference over R = 100 replicates without downscaling (top) and with downscaling (bottom) at $\epsilon = 4$



Background

Five microdata synthesizers

Simulation study and SDR application

Application

Concluding remarks

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Application

- Survey of Doctoral Recipients public use file from 2017
- $\blacktriangleright \ n=1601$ respondents who have positions at a 4-year college or university in the field of mathematics and statistics
- Variables: salary, gender, age, and the number of working weeks
- > Synthesizer: a beta regression after transformation of salary
- ▶ We fit and create a synthetic dataset for each of the synthesizers

- 1. Weighted: asymptotic DP (aDP)
- 2. Weighted-e: aDP with faster convergence
- 3. Censor_w: DP
- 4. Censor_uw: DP
- 5. Perturbed histogram: DP if bounded data
- Target $\epsilon = 5$

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

SDR application: utility and privacy results

	Data	Weighted	Weighted-e	Censor_w	Censor_uw	PH
Lipschitz	NA	2.62	2.61	2.50	2.50	NA
Privacy ϵ	NA	5.24	5.22	5.00	5.00	5.00
max-ECDF	NA	0.0656	0.1020	0.0968	0.1350	0.1310
avg-ECDF	NA	0.0011	0.0025	0.0026	0.0039	0.0057
Mean	91019	92994	89525	88581	88840	93654
Median	80000	80135	76451	75642	75211	91180
15th Q	51000	44303	40574	41142	38107	30108
90th Q	150000	162351	158037	158426	162686	163872

In the utility rows, the best performing synthesizer is in bold and the second best is underlined

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Background

Five microdata synthesizers

Simulation study and SDR application

Application

Concluding remarks

- U.S. BUREAU OF LABOR STATISTICS • bis.gov

Summary

- We propose a stronger, non-asymptotic DP mechanism through the censoring of log-likelihood
- It offers a practical, low-dimensional alternative to truncating the parameter space to achieve DP
- Weighted and Censor_w are recommended given their efficient balance of utility-risk trade-off
 - Weighted demonstrates superior utility preservation at the cost of an aDP guarantee
 - Censor_w provides a stronger, non-asymptotic DP guarantee at the price of slightly reduced utility performance

References I

- Dimitrakakis, C., Nelson, B., Zhang, Z., Mitrokotsa, A. and Rubinstein, B. I. P. (2017), 'Differential privacy for bayesian inference through posterior sampling', *Journal of Machine Learning Research* 18(1), 343–381.
- Hu, J. (2019), 'Bayesian estimation of attribute and identification disclosure risks in synthetic data', *Transactions on Data Privacy* **12**, 61–89.
- Hu, J., Williams, M. R. and Savitsky, T. D. (2022), 'Mechanisms for global differential privacy under bayesian data synthesis', *Statistica Sinica*. URL: https://api.semanticscholar.org/CorpusID:248665552
- Savitsky, T. D., Williams, M. R. and Hu, J. (2022), 'Bayesian pseudo posterior mechanism under asymptotic differential privacy', *Journal of Machine Learning Research* 23, 1–37.

Wasserman, L. and Zhou, S. (2010), 'A statistical framework for differential privacy', Journal of the American Statistical Association 105, 375–389.

The Paper Covering This Presentation

- U.S. BUREAU OF LABOR STATISTICS . bis.gov