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Motivation

I Hierarchical Bayesian small area models are implemented in
many NASS projects including Crops County Estimates, Farm
Labor, and Cash Rents projects: NASEM (2018, 2023),
Young and Chen (2022), Chen, et al. (2022a, 2022b, 2023).

I NASS contracted with NORC to conduct review and research
improvements to NASS sampling methods, including for
surveys resulting in small area estimation.

I One mid-term (2-4 years) recommendation of NORC’s is to
consider eliminating, reducing, or accounting for measurement
error (ME) in the covariates in the current small area
estimation modeling strategies.
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Background

I Current models use the previous corresponding year’s or
quarter’s official estimates.

I These covariates are subject to variability that would
presumably differ among areas.

I Ignoring measurement error in small area models tends to be
particularly problematic when the corresponding variances of
the covariates measured with error differ among areas.

I The potential pitfalls include suboptimal prediction and
incorrect estimation of uncertainty measures.

I Fuller (2009), Ybarra and Lohr (2007), Arima et al (2017),
Bell et al. (2019).
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Data: Quantities of Interest
I Regional-level and US-level estimates:

  

 I NASS Worker Types; the Standard Occupational
Classification (SOC)
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Direct Estimates — Wage Rates by Types
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Notation

I i = 1, . . . ,m index for areas (i.e., regions)

I j = 1, . . . , ni index for subareas (i.e., states) within area i

I θ̂ij , σ̂
2
ij Farm Labor direct estimates by worker types

I xij known auxiliary information: the previous year, same
quarter, official estimates; number of positive responses; and
worker types
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Subarea Model for Wage Rates (Original)
The subarea model for wage rates:

θ̂ij |θij
ind∼ N(θij , σ̂

2
ij),

θij |β, νi , σ2
µ

ind∼ N(x′ijβ + νi , σ
2
µ), j = 1, . . . , ni ,

νi |σ2
ν

iid∼ N(0, σ2
ν), i = 1, . . . ,m,

β ∼ MN(β̂, 1000× Σ̂β̂),

σ2
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ν∼Uniform(R+),

I Goals:
I State × type wage rate: ywg

ijk = θijk
I For publication: regional-level wage rates
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where h = 1, ...,H are the draws and K are the worker types.
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Conditional Structural Error Subarea Model
I One of the covariate xij1(= θ2ij) has measurement error, for

example, previous estimates.

I Structural error model has non-identifiability issue for
parameters.

I Proposed a two-part model and the two parts are connected
via the multiplication rule of probability.

I Two subarea models connected by the non-identifiable
parameter in the first part of the model:

π(θ1, θ2|D1,D2) = π(θ1|θ2,D1)π(θ2|D2),

where D1 and D2 are the data from the two parts of the
model.

I Given θ2, all the parameters become identifiable in the first
part of the model.
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Conditional Structural Error Subarea Model

I The first part of the model π(θ1|θ2,D1):

θ̂1ij |θ1ij
ind∼ N(θ1ij , σ̂

2
1ij),

θ1ij |β1, θ2ij , ν1i , σ
2
µ1

ind∼ N(x′1ijβ1 + γθ2ij + ν1i , σ
2
1µ),

I The second part of the model π(θ2|D2):

θ̂2ij |θ2ij
ind∼ N(θ2ij , σ̂

2
2ij),

θ2ij |β2, ν2i , σ
2
µ2

ind∼ N(x′2ijβ2 + ν2i , σ
2
2µ),

I The priors are similar to the original model.

I Note: θ̂1ij is the survey estimate and θ̂2ij is the covariate with
measurement errors.
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Case Study

I Example:
I 44 states within 18 regions by worker types
I Average wage rates
I Two scenarios of measurement errors are checked:

I Large variation: previous year’s survey variances + noise
related to sample sizes

I Small variation: original model posterior variances based on
the previous year survey

I Computation:
I 15,000 samples and 5,000 burn-in, 3 chains, each thinned

every 10 samples, resulting in a number of 3,000 samples for
inference

I Convergence diagnostics are conducted: Rhat ≤ 1.01 and
effective sample sizes are around 3,000
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Posterior Standard Deviation Comparisons
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Posterior Variances Ratios v.s. Measurement Errors

Posterior Variances Ratios = Original / ME Posterior Variances
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Posterior Mean Comparisons

Absolute Relative Differences (%) = 100× |ME−Original |
Original

Cases Min 25% Median Mean 75% Max
Small 0.002 0.161 0.442 0.682 0.964 4.024

Large 0.005 0.185 0.477 0.962 1.090 14.500
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Concluding Remarks

I Investigated the measurement error models from NORC’s
recommendation

I Proposed the conditional structural error model to avoid the
non-identifiablity issue

I The current situation for the previous year’s variations are
with smaller variations

I However, with large variation, the precision differences are
noticeable

I Both posterior means and posterior variances have large
differences when the measurement errors are with large
variations

I Further research and evaluation are needed
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