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This talk focuses on a NIST metrology program for data 
deidentification techniques.

Deidentification includes any processing to microdata that 
produces microdata in the same schema and is intended to 
be resistant to individual reidentification: SDC, synthetic 
data, differential privacy.  

Since February 2023 we’ve been running a massive 
community benchmarking and meta-analysis project, 
collecting metrics, algorithms and data samples from 
stakeholders, researchers and statistical agencies around the 
world— and making them all freely available and easy to use.

In this talk we’ll be presenting our recent and upcoming work 
on empirical privacy metrics. 
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NIST’s Collaborative Research Cycle: Benchmarking Deidentification

Deidentification Techniques Evaluated in this Talk: 

Differentially Private Synthetic Data
• SmartNoise MST (E = 1, 10)
• SmartNoise AIM (E = 1, 10)

Non-DP Statistical Model Synthetic Data
• R Synthpop CART

Proprietary AI (non-DP) Synthetic Data
• AINDO
• MostlyAI
• Anonos

Statistical Disclosure Control
• SDCMicro Cell Suppression (k-6, small vs large quasi ID set)
•  40% Subsample 

Sanity Checks: Complete ground truth data, complete withheld data



NIST’s Collaborative Research Cycle: Benchmarking Deidentification

Deidentification Techniques Evaluated in this Talk:  
All synthetic data approaches shown here have reasonable utility on this data set
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The pieces of our problem 

Measuring Privacy for 
Deidentified Data:

Could anyone use the 
deidentified data to do 
something bad that 
would make us regret 
having released it?  
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Attribute Privacy:

If I know someone’s 
identifying features A, could 
I use the deidentified data to 
infer invasive features B
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(2) worse than I could using 
the input real data?
[Synthpop: DiSCO] 
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Can I use the released data to learn something invasive about you?
Attribute Privacy: If I know someone’s identifying features A, could I use the deidentified data to infer invasive 
features B
(1) better than I could using the withheld data? [Anonymeter: Inference]
(2) better than I could using the input real data? [Synthpop: DiSCO] 



Membership Privacy:

If I know someone’s record, 
can I tell if they were in the 
(problematic) input data set?

(1) by checking if vulnerable 
outlier records look very similar 
to deidentified records? 
[Tumult: Empirical Leakage]

(2) by checking if deidentified 
data has dense spots where 
the withheld data doesn’t
[SynthCity: DoMIAS Prior] 
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Membership Privacy:  If I know someone’s record, can I tell that they were in the input data set
(1) by checking if vulnerable outlier records look similar to deidentified records? [Empirical Leakage]
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Reidentification Risk:
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Reidentification Risk: Can the deidentified data help me find your record because…
(1) your unique outlier record survived deidentification (as % of unique records)?  [Unique Exact Match]
(2) the released data is a bridge between two real data sets with features A and features B?  [Linkability] 

Can I use the released data to…. find you?



Singling Out:
 

Are there records in the 
deidentified data that look like 
they’re distinct (unusual) real 
people?  This could happen if the 
deidentified record is: 

(1) Closer to a real outlier 
person, say Bob, than any other 
real person is close to Bob.  
[Synthcity: Identifiability]

(2) An outlier (unique feature 
combo) and there’s a matching 
outlier in the real data. 
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Singling Out:
 

Are there records in the 
deidentified data that look like 
they’re distinct (unusual) real 
people?  This could happen if the 
deidentified record is: 

(1) Closer to a real outlier person, 
say Bob, than any other real 
person is close to Bob.  
[Synthcity: Identifiability]
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Singling Out:
 

Are there records in the 
deidentified data that look like 
they’re distinct (unusual) real 
people?  This could happen if the 
deidentified record is: 

(1) Closer to a real outlier person, 
say Bob, than any other real 
person is close to Bob.  
[Synthcity: Identifiability]

(2) A synthetic outlier (unique 
feature combo) and there’s also a 
matching outlier in the real data. 
[Anonymeter: Singling Out] 

Can I use the released data to imagine that I’ve found you?

Input Real Data Deidentified Data

A1 ∧ B1 A2 ∧ B1
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A1 ∧ B1 A2 ∧ B1

A1 ∧ B2 A2 ∧ B2

A1 ∧ B1 A2 ∧ B1

A1 ∧ B2 A2 ∧ B2

No other fake person is 
like Jan with A2 and B1. 

And there’s a real 
person that matches 
Jan’s unique feature 
combination.  

Jan



Singling Out:  Are there records in the deidentified data that look like they might be distinct real people?
(1) Fake records closer to a real outlier person than any other real person is. [Synthcity: Identifiability]
(2) Fake outlier records (unique feature combo) with matching real records  [Anonymeter: Singling Out] 

Can I use the released data to imagine that I’ve found you?



So what’s private?   Is there consensus?



Is there consensus?  …what if we only look at author-tuned metrics?



Tuning and configuring privacy metrics (open questions):

Measuring 
Privacy for 
Deidentified 
Data:

Possibly we need to 
check how we’re 
configuring the 
metrics:
• Similarity between 
records with mixed 
numerical and  
categorical features 

• Quasi-identifiers
• KNN pool size (k)
• etc…



Collaborative Research Cycle: Red-Teaming Deidentification Algorithms 
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Privacy for 
Deidentified 
Data:
 

Possibly we need to 
check how we’re 
configuring the 
metrics.

…or maybe we 
should just see if any 
of you can hack it?



Collaborative Research Cycle: Red-Teaming Deidentification Algorithms 

Measuring 
Privacy for 
Deidentified 
Data:
 

Possibly we need to 
check how we’re 
configuring the 
metrics.

…or maybe we 
should just see if any 
of you can hack it?

Thank you!
Questions?

gary.howarth@nist.gov
christine.task@knexusresearch.com

Next up:  
We will be running a community Red 
Team Exercise in Spring of 2025 

Between now and then, we’ll be 
hosting Privacy Metric Discussion 
Hours, where you can learn the 
details of the metrics we just flew 
through, and meet metric designers.  
Sign up on our site to keep in touch! 
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