
Enabling Third-Party Audits of 
Algorithmic Systems with Privacy 
Enhancing Technologies

xD
https://www.xd.gov

2024 FCSM Research and Policy Conference
10/24/24

Michael Walton
Tomo Lazovich, Ph.D. (they/them)

xD, U.S. Census Bureau

All statements are the author’s personal views and do not necessarily reflect 
Census Bureau policy. 

https://www.xd.gov


xD is an emerging technologies group that’s 

advancing the delivery of data-driven services 

through new and transformative technologies.

xD MISSION
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We do this work by bringing on cohorts of Emerging 
Technology Fellows and by collaborating with others 

throughout the Census Bureau and beyond!



PETs + Responsible AI

3

Technologies that enable data 
analysis while “mitigating 
privacy risks arising from data 
processing” -EO 14110

PETs
Methods for building and 
evaluating AI/ML systems that 
account for real-world impacts

Responsible AI

PETs-enabled 
3rd Party Audits



Third-Party Audits of Algorithmic 
Systems

Fairness
Identify & mitigate 
potentially harmful 

biases

Transparency
Insights into model 

decision-making 
processes

Utility
Independently validate 

performance claims

Crucial for public trust in AI/ML systems and 
promoting responsible deployment



MODEL OWNER VIEW
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GOAL: Provide a model API for users



MODEL OWNER VIEW
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Membership Inference
Data Reconstruction

Model Extraction

Challenges…



MODEL OWNER VIEW

7Mitigate privacy risks (eg DP, DP-SGD, distillation, regularization etc.)



MODEL AUDITING
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How does the 
model perform across 
disaggregated 
subpopulations?



MODEL AUDITOR VIEW
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GOAL: Evaluate model performance 

conditional on a sensitive attribute



MODEL AUDITOR VIEW
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Challenge: Model owner & auditor do not have 

/ cannot access sensitive attribute dataset



How can we protect privacy of the 
sensitive attribute dataset while 
preserving metric fidelity?



MODEL AUDITING WITH PETs
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Add noise: differential privacy, 
synthetic data generation

Encrypt: secure multi-party 
computation, fully homomorphic 
encryption, zero knowledge proofs, 
secure enclaves



PETs TRADEOFFS
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Point size = 
Computational cost

Information revealed

C
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SMPC
FHE

No privacy 
protection

Synthetic 
data

Differential
privacy

Traditional
disclosure 
avoidance

Techniques trade off 
between fidelity, 
privacy, and 
computation cost



EXPERIMENTAL SETUP
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• Model Owner: Fit a (toy) logistic 
regression model on folktables
ACS Employment task

• Sensitive Attribute Owner: 
Demographic features w/ common 
UID

• Auditor: Evaluate PETs in 
combination with common 
fairness metrics using fairlearn



DIFFERENTIAL PRIVACY
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• Advantage: Privacy guarantees

• Disadvantage: uncertainty 
increases with the magnitude of 
noise added

(ongoing work exploring corrections!)



PRIVATE JOIN AND COMPUTE
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Both parties encrypt common 
identifier, join & sum encrypted 
attributes

• Advantage: Exact calculation

• Disadvantage: computational cost, 
privacy attacks 

(ongoing work exploring mitigations!)



THE FULL PICTURE…
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No single silver-bullet PET, complex tradeoffs 
between privacy, utility, fairness & compute



We’d love to hear from you!
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inquiries@xd.gov

Mike Walton michael.w.walton@census.gov



Backup



DIFFERENTIAL PRIVACY + FAIRNESS METRICS
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DIFFERENTIAL PRIVACY + FAIRNESS METRICS

21https://fairlearn.org/v0.10/api_reference/index.html

https://fairlearn.org/v0.10/api_reference/index.html


PRIVATE JOIN AND COMPUTE PROTOCOL, MORE FORMALLY
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For details of the protocol, see Ion et al., On Deploying Secure Computing: Private Intersection-Sum-With-Cardinality, https://eprint.iacr.org/2019/723.pdf
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