

A Machine Learning Approach to SDOH Indices: Optimizing Predictive Power for Health Outcomes

Chandler McClellan, Patricia Keenan, Thomas Selden, Thomas Buchmueller 10/24/2024 – FCSM

Disclaimer

The views expressed in this presentation are those of the authors, and no official endorsement by the Agency for Healthcare Research and Quality is intended or should be inferred.

SDOH Indices

- Seek to summarize a given area's Social Determinants of Health
- Used for policy development, resource allocation, research, community health assessment, risk stratification, etc.
- Examples:
 - Area Deprivation Index (ADI) Mortality w.r.t. Deprivation
 - Social Vulnerability Index (SVI) Disaster response
 - Social Deprivation Index (SDI) Triple Aim (costs, care, health)
 - Child Opportunity Index (COI) Children's development

Current approaches to indices

- Select Variables
- Reorient/Normalize/Percentiles
- Calculate Index
 - Sum
 - Principal Component Analysis
 - Take first PC as index
 - Linear combination of variables that captures most variation
 - Factor Analysis
 - Linear combination of variables that captures common variation
 - Targeted prediction
 - Predicted value is the index value
- Validate to show index is related to outcomes of interest

Potential Pitfalls

- May leave out important variables (or include unimportant ones)
- Sensitive to data handling choices
- Often linear and may fail to capture important relationships in the data
- May not be related to outcomes of interest
- Often validated on modeled outcomes
 - Area level estimates of outcomes often modeled using SDOH

Our Approach

- Ensures index is related to outcomes
- Census Tract SDOH used in the ADI (16) AHRQ SDOH database
- Outcomes: Priority Conditions, Access, Expenditure MEPS data
- Use a neural network framework to encode SDOH in a single value
 - Data driven variable selection
 - Captures complex relationships Universal function approximator
 - Multiple outcomes
- Use individual level data to build and validate model

An Encoding Approach for Indices

	AHRQ SDOH	ADI						
	% <100 FPL							
	% <125 FPL	% <150% FPL						
	Ln(% <\$10k / % >\$50k)							
	% Less than HS	% less than 9 th grad						
	% White Collar							
2S —	% Unemployed							
	% Single Parent							
	% Owner Occupied							
	% Over-crowded							
	% No Vehicle							
	% No Plumbing							
	%No Computer	% No Phone						
	Home Value							
	Income							
	Mortgage payment							
	Rent payment							

SDOH Measures Census Tract

MEPS Indices – Individual Level (Census Tracts)

- Targets Individual Health Related Outcomes
 - Five Priority Conditions: Chronic Heart Disease, High BP, High Cholesterol, Stroke, Diabetes (5)
 - Full set of Priority Conditions (12)
 - Access Measures: No Usual source of care, Cost a barrier to Medical Care/Dental Care/Rx access (4)
 - Total Medical Expenditures (1)
- Architecture
 - "Encoder" 3 layers: nodes {70,30,1} with regularization
 - "Decoder" Linear/logit regression
- Construct Index using 66% of MEPS individuals from 2009-2020
- Hold out 33% for validation and testing
 - No overlapping census tracts
- Compare to ADI
 - Publicly available ADI may not be accurate. Also assess a community deprivation index (CDI)

Evaluation

- Estimate predictive model in training data
 - $\blacktriangleright Y_i = \alpha + \beta * Index_i + \epsilon$
- Predict outcomes in test data • $\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta} * Index_i$
- Marginalize prediction over actual outcome values.

Difference in Predictions between those With and Without Condition Relative to Mean – Chronic Condition Targets

	ADI	CDI	Chronic Condition	Full	Access	Expenditure
Chronic Heart Disease	3.236	0.787	8.323	<mark>8.559</mark>	-0.024	2.09
Diabetes	4.329	4.404	<mark>4.702</mark>	4.336	1.227	0.829
High BP	2.836	1.006	<mark>5.482</mark>	5.459	-0.016	1.208
High Chol.	0.077	0.108	<mark>1.916</mark>	1.737	0.373	0.642
Stroke	6.924	3.674	10.457	<mark>11.115</mark>	0.195	2.651

Difference in Predictions between those With and Without Condition Relative to Mean – Additional Priority Condition Targets

	ADI	CDI	Chronic Condition	Full	Access	Expenditure
Angina	5.567	1.673	11.628	<mark>15.288</mark>	-0.36	2.328
Myocardial Infarction	8.228	2.563	12.035	<mark>14.207</mark>	-0.089	3.446
Other Heart	0.878	0.239	5.171	<mark>7.551</mark>	2.846	4.684
Asthma	0.822	0.622	1.316	2.011	0.101	<mark>4.197</mark>
Emphysema	14.045	3.562	21.166	<mark>29.429</mark>	-0.606	7.014
Arthritis	2.943	0.209	7.520	<mark>9.278</mark>	0.803	3.892
Cancer	0.039	1.500	3.846	<mark>5.053</mark>	3.748	4.773

Difference in Predictions between those With and Without Relative to Mean – <u>Access Outcomes</u>

	ADI	CDI	Chronic Condition	Full	Access	Expenditure
No Usual Source of Care	0.601	<mark>2.871</mark>	0.423	1.374	2.488	2.108
Cost Barrier Medical	4.577	4.026	0.329	0.108	<mark>6.121</mark>	0.751
Cost Barrier Dental	4.909	4.574	1.332	0.676	<mark>6.398</mark>	0.397
Cost Barrier Rx	<mark>10.469</mark>	10.084	4.478	2.043	8.892	-0.326

*Correlation b/t USC and Medical, Dental, and RX Barriers: 0.05, 0.009, 0.003

Predicted Mean Expenditure by Actual Expenditure Decile

Predicted Adjusted Mean Expenditure by Actual Expenditure Decile

Takeaways

- Neural Network Encoders offer a powerful way to summarize many variables
 - Isolates input variation related to outcomes of interest
- Generally better predictions
 - Both targeted outcomes and related outcomes
 - Prediction of distal outcomes can suffer
 - Needs careful consideration about index use
- Tradeoff between prediction power and breadth of targeted outcomes

Potential Extensions

- Fine-Tuning the encoder
- More encoder input variables
 - Limited for comparison purposes
- More complex "decoder"
 - Non-linearities
 - More index dimensions
- "Decoder" predictors
 - Individual level characteristics

Thank You

Questions and Comments: chandler.mcclellan@ahrq.hhs.gov