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The Machine Learning Workgroup

• Background
• Purpose
• Project charter
• Recruitment
• Sub team volunteers
• Assigned readings
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Collaborative Efforts

• Regular workgroup meetings
• Monthly team meetings to learn together
• Sub team meetings to catch up and solve problems

• Meetings to determine research question
• Met with senior researchers and leaders within the Social, Economic and 

Housing Statistics Division (SEHSD) to discuss needs
• Met with senior researchers outside SEHSD in the Center for Statistical 

Research and Methodology (CSRM) to discuss viability
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Finding the Best Research Question

• Evaluation of potential research questions
• Timely
• Achievable
• Relevant

• Chosen research question: To what extent can machine learning 
methods enhance the geocoding of individual tax returns to Census 
blocks for the purpose of Small Area Income and Poverty Estimates 
(SAIPE)?
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The Need to Impute Missing Geocodes

• SAIPE provides income and poverty estimates used in the distribution 
of federal funds to local jurisdictions 

• The SAIPE school district model uses related school age children in 
poverty shares measured from individual tax returns

• Some individual tax returns cannot be geocoded
• Accurate geocoding reduces the potential bias of estimates
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Literature Review – Traditional Methods 

• Random allocation using: 
• land area
• total housing units
• total population
• age/sex/race/ethnicity weighting factors 

• Deterministic centroid allocation

References: Hibbert et al., 2009; Henry and Boscoe, 2008; Hurley et al., 
2003; Lan Luo et al., 2010; Song Lin, 2016
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Literature Review – Machine Learning Methods

• Combinations of different machine learning similarity measures or 
deep learning algorithms in text-based address matching 

• Applications to other parts of the process, such as:
• address parsing and address locating
• test set selection
• model selection
• estimating match rate accuracy and other quality control tasks

References: Cruz et al., 2022; Lee et al., 2020
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Literature Review – Challenges

• Traditional geocode imputation methods perform best when 
weighted by demographics, but less accurate in dense areas

• Machine learning methods so far are very computationally intensive 
for relatively modest gains

References: Henry and Boscoe, 2008; Hurley et al., 2003; Cruz et al., 
2022
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Utilization of Mailing Address Information to 
Geocode Individual Tax Exemptions

Master 
Address File 

(MAF)

Individual Tax 
Exemptions

Match

No Match

Use MAFID 
Geocode

Randomly Allocate 
Geocode Based on 

Mailing Address 
Information
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Introduction to Block-ZIP Pieces
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Example City View of Roads, Mailable Addresses, ZIP Codes, and Two Census Blocks 

Legend
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Example of Census Blocks
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Example City View of Roads, Mailable Addresses, ZIP Codes, and Two Census Blocks
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Example of Census Block-ZIP3 Pieces
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Example City View of Roads, Mailable Addresses, ZIP Codes, Two Census Blocks, 
and Four Block-ZIP3 Pieces
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Example of Census Block-ZIP5 Pieces
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Legend
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Example City View of Roads, Mailable Addresses, ZIP Codes, Two Census Blocks, 
and Six Block-ZIP5 Pieces
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Example of Census Block-ZIP9 Pieces
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Example City View of Roads, Mailable Addresses, ZIP Codes, Two Census Blocks, 
and Seven Block-ZIP9 Pieces
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Current Process to Impute Missing Geocodes 
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Find Intersection of Census Blocks 
and ZIP Codes Using the Mailable 

Address Universe

For Each ZIP Code, Quantify the 
Portion of the Population Living 
within Overlaying Census Blocks 

Given an Individual Tax Return’s 
State, County and Valid ZIP Code, 
Impute Missing Geocodes Using a 
Uniform Random Distribution on 

the Portion of the Population living 
within Overlaying Census Blocks

Next Steps: Modeling & Estimation



Considering Another Framework to Allocate 
Individual Tax Exemptions without Geocodes 
Utilizing Mailing Address Information
Current Production Framework
• Based on Decennial Census 

shares

Machine Learning Framework
• Based on modeled estimates of 

the number of individual tax 
exemptions without geocodes in 
the SAIPE universe
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Data Utilized in Machine Learning Framework

Target Variable
• Number individual tax 

exemptions without geocodes in 
the SAIPE universe

• SAIPE universe
• Tax exemptions with geocodes  in 

the SAIPE universe
• Non-filers in the SAIPE universe

Feature Variables
• Mailable address counts
• Rural/urban housing units
• Decennial Census residential 

population counts by 
race/gender/age/group quarters 
type/household type
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Machine Learning Method Overview

• Unit of Analysis
• Census block
• Census block-ZIP3 piece
• Census block-ZIP5 piece
• Census block-ZIP9 piece

• Data Sources
• 2020 Decennial Census Microdata Detailed 

File 
• 2021 Income Year Individual 1040 Tax 

Records 
• 2022 Population Estimates Program County 

Population Estimates

• Models Considered
• Lasso regression
• Ridge regression
• Logistic regression with elastic net
• Decision tree
• Random forest
• k-Nearest neighbors
• Naive bayes
• AdaBoost trees
• Gradient boosting trees
• Support vector machine 
• Model averages
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Machine Learning Modeling Process
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Machine Learning Model Evaluation Methods

• Matthews correlation: Correlation of Y-predict and Y-true
• Geometric mean: A geometric mean of recall of the two classes
• Area under the receiver operator curve
• Area under the precision recall curve
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Utilization of Machine Learning Results (Part 1 of 5)
Hypothetical Example
id block zip9 modeled estimate of SAIPE universe 

non-geocoded exemption counts

1 01-001-000001-0001 11122-3333 2

2 01-001-000001-0001 77788-9999 2

3 01-001-000001-0001 11155-6666 1

4 01-001-000001-0001 11122-4444 1

5 01-001-000001-0002 77788-9999 6

6 01-001-000001-0002 11155-6666 0

7 01-001-000001-0002 11122-4444 1
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Utilization of Machine Learning Results (Part 2 of 5)
Hypothetical Example
id block zip9 modeled estimate of SAIPE universe 

non-geocoded exemption counts

1 01-001-000001-0001 11122-3333 2

2 01-001-000001-0001 77788-9999 2

3 01-001-000001-0001 11155-6666 1

4 01-001-000001-0001 11122-4444 1

5 01-001-000001-0002 77788-9999 6

6 01-001-000001-0002 11155-6666 0

7 01-001-000001-0002 11122-4444 1

Sum Block-ZIP 
Piece Estimates 
to the ZIP-level

zip9 modeled 
estimate

11122-3333 2

11122-4444 2

11155-6666 1

77788-9999 8
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Utilization of Machine Learning Results (Part 3 of 5)
Hypothetical Example

id block zip9 modeled 
estimate

zip9 
sum

zip9 
share

1 01-001-000001-0001 11122-3333 2 2 100%

2 01-001-000001-0001 77788-9999 2 8 25%

3 01-001-000001-0001 11155-6666 1 1 100%

4 01-001-000001-0001 11122-4444 1 2 50%

5 01-001-000001-0002 77788-9999 6 8 75%

6 01-001-000001-0002 11155-6666 0 1 0%

7 01-001-000001-0002 11122-4444 1 2 50%
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Utilization of Machine Learning Results (Part 4 of 5)
Hypothetical Example

Non-geocoded individual tax record with ZIP code    11155-6666 

will have a geocode imputation of 01-001-000001-0001 100% of the time. 

id block zip9 modeled 
estimate

zip9 
sum

zip9 
share

1 01-001-000001-0001 11122-3333 2 2 100%

2 01-001-000001-0001 77788-9999 2 8 25%

3 01-001-000001-0001 11155-6666 1 1 100%

4 01-001-000001-0001 11122-4444 1 2 50%

5 01-001-000001-0002 77788-9999 6 8 75%

6 01-001-000001-0002 11155-6666 0 1 0%

7 01-001-000001-0002 11122-4444 1 2 50%
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Utilization of Machine Learning Results (Part 5 of 5)
Hypothetical Example

Non-geocoded individual tax record with ZIP code 77788-9999 

will have a geocode imputation of 01-001-000001-0001 25% of the time
                                                        and 01-001-000001-0002 75% of the time. 

 

id block zip9 modeled 
estimate

zip9 
sum

zip9 
share

1 01-001-000001-0001 11122-3333 2 2 100%

2 01-001-000001-0001 77788-9999 2 8 25%

3 01-001-000001-0001 11155-6666 1 1 100%

4 01-001-000001-0001 11122-4444 1 2 50%

5 01-001-000001-0002 77788-9999 6 8 75%

6 01-001-000001-0002 11155-6666 0 1 0%

7 01-001-000001-0002 11122-4444 1 2 50%
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Methods to Compare Frameworks

Measuring Precision
• Use random distribution to impute 

missing geocodes 10 times
• Quantify the average value of the 

share of related children in 
poverty, its percent error, absolute 
deviation and average deviation

Measuring Accuracy
• Remove the geocode from a 

different 20% of the individual tax 
records that are geocoded five 
times, impute geocodes and 
determine if there is a difference 
between the real and imputed 
result for each geocoded individual 
tax record

• Quantify the portion of correctly 
geocoded individual tax records at 
the level of the Census block, tract 
and school district
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Discussion of Results

• Best performing machine learning models
• Random forest
• k-Nearest neighbors

• Overall precision of traditional versus machine learning model 
• Machine learning model is guaranteed to be more precise

• Overall accuracy of traditional versus machine learning model
• Machine learning model accuracy under development
• Traditional model performed better than expected

27



Conclusion
• Reflections: Developing a machine learning workgroup is a great way to 

empower employees to utilize data science training to solve problems
• Next Steps: Utilize more known information on family structure
• Challenges: Model and input processing is computationally expensive

• Contact Information: 
• Kate Willyard, Small Area Estimates Branch, U.S. Census Bureau
• Katherine.a.Willyard@census.gov
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Thank You Machine Learning Workgroup and Supporters!

• Literature review sub team
• Albert Nedelman
• Amelia Ingram
• Angelica Phillips

• Input data and current process 
evaluation sub team

• Ming-Ray Liao
• Sam Shirazi

• Machine learning sub team
• Angelica Phillips
• Jadvir Kaur Gill
• James Ho Shek
• Mark Frame
• Ming-Ray Liao

• Senior SEHSD leaders
• Alfred Gottschalck
• Carolyn Gann
• David Powers
• David Waddington
• James Mouser
• Jasen Taciak
• Sandy Dietrich
• Wesley Basel

• Senior CSRM leaders
• Jerry Maples
• Ryan Janicki
• Scott Holan
• Soumendra Lahiri
• William Bell
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