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Abstract 
Incomplete survey data can arise when there are unexpected disruptions to data collection, 
such as the recent pandemic. The result is a sample that is a product of the probability-
based sample design, the non-probabilistic mechanism that determined which sampled 
cases were worked prior to the disruption, and nonresponse. We describe a method used in 
the U.S. Program for the International Assessment of Adult Competencies (PIAAC) for 
combining incomplete survey data with complete survey data. The sample design consisted 
of a nationally representative core sample and a supplemental state-based sample, where 
the goal of the supplemental sample was to improve small area estimates. Given the 
uncertainty in response rates and potential pandemic-related disruptions, the design 
allowed for the flexibility to shift fieldwork effort from the supplemental sample to the 
core sample as needed. In fact, data collection for the state supplement was halted less than 
halfway into the data collection period, before interviewers had visited all areas. To salvage 
the collected data from the incomplete supplemental sample, we combined it with the core 
sample by using a composite weighting technique. We describe the weighting methods and 
an evaluation of the combined data. 
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1. Introduction 
 
With declining response rates for probability samples and an increased demand for timely 
data, the use of administrative data, web panels, or other non-probability samples has 
become increasingly commonplace. Non-probability samples can also arise unexpectedly. 
For the U.S. Programme for the International Assessment of Adult Competencies (PIAAC) 
Cycle 2, the situation was one of an incomplete sample, meaning a sample that started out 
as a probability sample, but then there were unexpected disruptions so data collection could 
not be completed. Other organizations may have experienced a similar situation during the 
pandemic, when in-person surveys were halted. The resulting sample is the outcome of 
probability selection, the non-probabilistic mechanism that determined which sampled 
cases and areas (primary sampling units) were worked prior to the disruption, and 
nonresponse.  
 
Given the time, effort, and cost in collecting the data, a solution is needed to salvage the 
data and make valid inferences. If a corresponding probability sample exists, then methods 
for combining probability and non-probability samples can be applied to this situation. This 
was the case for U.S. PIAAC Cycle 2, which is described further in section 2. Many 
methods for combining probability and non-probability samples exist in the literature. 
Dever (2018) discusses “Hybrid” estimation while combining a data file containing 



probability-based and nonprobability sample cases. Dever explores composite estimation 
and propensity score adjustment as ways to have the combined data project to the intended 
target population. Valliant (2020) compares seven alternatives for estimation from 
nonprobability samples. For example, a quasi-randomization approach is applied to 
estimate pseudo-inclusion probabilities for the non-probability sample to correct for 
selection bias. The approach uses a binary regression model to help combine the non-
probability sample with a probability-based reference sample to estimate pseudo-inclusion 
probabilities. The reference sample needs to represent the target population through its 
sample weights. Wu (2022) classified inference methods for non-probability samples into 
three types: (1) model-based prediction approach, which uses regression models or mass 
imputation to predict the outcome, (2) inverse probability weighting, which models 
propensity scores to create weights, and (3) doubly-robust estimation, which combines (1) 
and (2). 
 
For our situation, we opted for a calibration and compositing approach, which builds on 
Dever (2018) and is described in section 3. Including the incomplete data from the 
supplemental sample had a negligible effect on the resulting national estimates, as shown 
in the evaluation in section 4, and is expected to improve model-based estimates. 
 
 

2. U.S. PIAAC Cycle 2 
 
PIAAC is an international survey of working-age adults sponsored by the Organization for 
Economic Cooperation and Development (OECD). It assesses skills in literacy, numeracy, 
and problem-solving through an in-person household survey. The survey consists of a 
Background Questionnaire (BQ) and a cognitive assessment. PIAAC Cycle 1 involved of 
three rounds of data collection between 2011 and 2018, with 38 countries participating in 
at least one of the three rounds. Data collection for PIAAC Cycle 2 occurred in 2022 to 
2023, with 31 countries participating.  
 
The United States collected data in all rounds to date, with sponsorship by the National 
Center for Education Statistics (NCES). The target population for U.S. PIAAC consisted 
of non-institutionalized adults aged 16 to 74. The age range of 16 to 65 is consistent with 
the international target population and is used for international comparisons. Adults aged 
66 to 74 are of particular interest to the United States and so were added as a country-
specific sample. Results from U.S. PIAAC Cycle 1 can be found at 
https://nces.ed.gov/surveys/piaac/. A first look at national results and international 
comparisons from U.S. PIAAC Cycle 2 will be available in December 2024. 
 
2.1 Design Goals 
 
The goal of the U.S. PIAAC Cycle 2 design was to provide high quality data and sufficient 
yield for national estimates and modeling purposes, specifically small area estimation 
(SAE) models and psychometric models. As part of an international survey, it had to adhere 
to international standards and guidelines (OECD 2022) as well as NCES statistical 
standards (NCES 2012). 
 
U.S. PIAAC Cycle 2 was designed to produce national estimates of mean proficiency 
scores and proficiency-level distributions for the three proficiency domains – literacy, 
numeracy, and adaptive problem solving. The sample size needed to be sufficient to 



produce estimates for key sub-populations, such as age group, and to make comparisons 
with other countries in Cycle 2 and for the United States across cycles. Figure 1 shows an 
example of the reporting of national estimates from Cycle 1. It provides a comparison of 
the mean proficiency scores1 for adult aged 16 to 65 in the United States against the two 
highest performing countries and the international average. NCES will publish similar 
reports for Cycle 2. 
 

 
Figure 1. Example of the reporting of national estimates for U.S. PIAAC, taken from the 
Cycle 1 PIAAC International Highlights Web Report (NCES 2020-127) 
 
Another goal of Cycle 2 is to use SAE models to provide indirect estimates of proficiency 
for counties, states, and sub-populations within states. A similar effort was made in Cycle 
1, resulting in the PIAAC Skills Map. The skills map allows users to view proficiency 
estimates for counties, states, and age or education domains within states and counties; 
make comparisons across counties, states, or with the nation; and obtain additional 
demographic information for the area. It can be a useful tool for state adult education and 
labor departments in making policy or program decisions. Figure 2 shows an example of a 
heat map taken from the skills map. It indicates the percentage of the population at or below 
Level 1 in literacy (the lowest level) for each county in the United States, with darker 
shades of blue indicating a higher percentage.  
 
To produce high quality small area estimates, the aim in Cycle 2 was to maximize the 
number of states with PIAAC survey data so there would be less reliance on the model to 
extrapolate for states without survey data. We also planned to select at least two counties 
per state. This would allow us to produce direct estimates of variance for input to the model. 
It would also better capture the diversity in proficiency between counties in the same state.  
 
 

                                                 
1 Adaptive Problem Solving in Cycle 2 replaced the Cycle 1 proficiency domain of Digital Problem Solving. 



 
Figure 2. Example of the reporting of small area estimates for U.S. PIAAC, taken from 
the Cycle 1 Skills Map at https://nces.ed.gov/surveys/piaac/skillsmap/.  
 
Finally, the international standards required a sufficient sample size for psychometric 
models. PIAAC involves a proficiency assessment. Given the large number of test items, 
not every participant receives every item. Therefore, the final proficiency scores cannot be 
determined by simply adding up the number of correct items. Instead, proficiency plausible 
values (PVs) are generated using Item Response Theory (IRT) and latent regression 
modeling (Yamamoto, et al., 2019). The PIAAC Consortium required a minimum number 
of responses per item for this purpose.  
 
2.2 Sample Design 
 
The U.S. PIAAC Cycle 2 sample was designed to obtain the above objectives. The design 
consisted of two components: a nationally representative core sample and a state-based 
supplemental sample. The purpose of the supplemental sample was to obtain at least two 
sampled primary sampling units (PSUs) in each state when combined with the core sample, 
strengthening the small area estimates. Given the uncertainties in data collection coming 
out of the pandemic, the design specifically allowed for the possibility of dropping the 
state-based sample.  
 
The core sample design consisted of a four-stage area sample, with: 

1. PSUs defined as counties or groups of counties, 
2. Secondary sampling units (SSUs) defined as Census blocks or groups of 

Census blocks, 
3. Dwelling units, and 
4. Eligible adults.  

 
At the first stage, we selected a stratified, probability proportionate to size (PPS) sample 
of 80 PSUs. The major strata were defined by Census region, metropolitan statistical area 
(MSA) status, and the Cycle 1 county-level small area estimates of the percentage at or 
below Level 1 in literacy. Within the major strata, the PSUs were further stratified by 
characteristics related to educational attainment, poverty status, race/ethnicity, 
employment status, health insurance status, marital status, and occupation. This was done 



via a nested stratification process, as discussed in Krenzke and Haung (2009). The core 
sample yielded 4,287 respondents. 
 
After selecting the PSUs for the core sample, states were put into three categories: (1) two 
or more sampled PSUs in the core sample, (2) one sampled PSU in the core sample, (3) no 
sampled PSUs in the core sample. States that fell into the first category had no PSUs 
selected for the state supplement. For those falling in the second category, we selected one 
additional PSU in the state through conditional sampling. The core sample PSU was 
removed from the frame, and one additional PSU was selected with PPS. For states in the 
third category, we selected two PSUs in the state using stratified PPS sampling, where the 
two strata were defined by the Cycle 1 county-level small area estimates of the percentage 
at or below Level 1 in literacy. Within PSUs, we selected SSUs, dwelling units, and eligible 
adults following the sample design for the core sample. 
 
Around two months into the 9.5-month field period, data collection for the state 
supplemental sample was halted due to funding. At that time, the supplemental sample had 
yielded 350 respondents, around 20 percent of the target. Because interviewer availability 
differed across PSUs, the sample had not been evenly worked. Interviewers had not started 
contacting sampled households in some PSUs. In PSUs where work had started, some 
sampled households or adults could have received multiple contact attempts and been fully 
worked to protocol, while others could have only received a single attempt or no attempts. 
If proficiency levels differed between the areas and cases that had been worked versus 
those that had not, or between the low level-of-effort cases versus the high-level-of-effort 
cases, then the resulting sample could produce biased proficiency estimates if not handled 
appropriately in weighting and estimation.  
 
 

3. Method for Integrating Samples 
 
In deciding on a methodology for integrating the core and supplemental samples, we 
considered several factors: 

• Our end-product was a set of analysis weights. The weights are used in the 
psychometric models that produce the proficiency scores and are included on 
public-use files for analysts. 

• The “selection” probabilities for the combined sample were unknown, both at the 
individual and PSU level. Although we knew the initial probability of selection, 
we did not know the probability that a case (or PSU) was attempted. Therefore, 
we could not create initial design weights as the inverse of the selection 
probabilities. 

• The outcome variables (proficiency scores) were not available at the time of 
weighting. As noted above, the weights are used in the creation of proficiency 
scores. Therefore, model-based prediction approaches, such as mass imputation, 
and doubly robust estimation approaches were not applicable. 

• The core national sample was much larger (around ten times larger) than the state 
supplemental sample. This is the opposite of the typical situation in which a large 
non-probability sample is combined with a much smaller probability sample. 
Therefore, bias reduction was not as much a concern, and we could choose an 
approach that placed more emphasis on limiting variance, specifically variation 
due to unequal weights. 

  



Given the above factors, we opted for a calibration and compositing approach to produce 
sampling weights, with an initial weight of 1 for the supplemental sample respondents. 
Figure 3 provides an overview of the process. Prior to combining the samples, the core 
national sample was assigned initial weights that reflected the selection probabilities and 
were adjusted for nonresponse. The respondents from the supplemental sample were 
assigned an initial weight of 1. Both samples were then calibrated to population totals and 
composited. The calibration and compositing process is described further in section 3.1. 
The composited sample was then calibrated (raked) to population totals related to age, 
gender, region, race/ethnicity, education, and country of birth. Extreme weights were 
identified and trimmed, and then another round of raking was performed. Details on the 
weighting process can be found in the U.S. PIAAC Technical Report for Cycle 2. 
 

 
 
Figure 3: Weighting process for combining the PIAAC Cycle 2 core national sample and 
incomplete state supplemental sample 
 
If inclusion of the supplemental sample is independent of key survey outcomes after 
conditioning on the calibration variables, then the chosen approach enables unbiased 
estimation. Although this is often a difficult assumption to meet, PIAAC has a strong set 
of weight calibration variables for both the pre-compositing and post-compositing 
calibration. By strong, we mean that the variables, such as education, have a strong 
correlation with proficiency (Krenzke et.al., 2019). By avoiding a more complex process, 
such as one involving additional nonresponse adjustments for the supplemental sample, we 
are also limiting variability in the weights. 
 
3.1 Compositing 
 
Before combining the samples, each was post-stratified to 2022 American Community 
Survey (ACS) control totals for age group by region by education.2 Post-stratification cells 
are shown in Table 1. We could not do the full three-way crossing of the variables because 
of small sample sizes. In determining the post-stratification cells, we had considered using 
the major strata from the core sample design. However, the smallest geographic unit in the 
ACS data (Public Use Microdata Areas, PUMAs) crossed stratum boundaries, and control 
totals by major strata could not be derived. The final set of post-stratification variables met 
PIAAC-specific objectives and were intended to reduce inclusion bias associated with the 
incomplete supplemental sample. Age was chosen to distinguish between the international 
target population of age 16-65 and the U.S.-specific population of age 66-74. Region is 
related to the proportion of supplemental sample cases that were worked, as the timing of 
                                                 
2 Four PSUs were selected with certainty (probability 1) in the core national sample. The four 
PSUs were excluded from the pre-compositing calibration and compositing process because they 
are self-representing and had no chance of selection for the state supplemental sample. 
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which sampled cases were worked varied across states according to logistical factors 
during the field period. Education was included as it is highly related to proficiency. By 
choosing a variable that was related to the inclusion probability, and a variable that was 
related to the survey outcome, we expect to reduce selection bias associated with the 
supplemental sample (Elliott and Valliant, 2017). 

 
Next, composite weights were created for person i in domain g as follows: 
 
𝑊𝑊�𝑔𝑔𝑔𝑔𝐹𝐹  = 𝛼𝛼𝑔𝑔𝐶𝐶𝑊𝑊𝑔𝑔𝑔𝑔
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𝑆𝑆 I𝑆𝑆(𝑖𝑖), 

 
Where 
 
C = core sample, 
S = supplemental sample, 
g = age 16-65 by region and age 66-74, and 
𝛼𝛼 = compositing factor. 
 
The compositing factor attempted to give more weight to the sample with lower mean-
square error (MSE). It was calculated as follows, based on Krenzke and Mohadjer (2020): 
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Where 
 
𝑛𝑛𝑔𝑔𝐶𝐶 and 𝑛𝑛𝑔𝑔𝑆𝑆 = the number of respondents in domain g of the core sample and supplemental 
sample, respectively, 
𝑐𝑐𝑣𝑣𝑔𝑔𝐶𝐶 and 𝑐𝑐𝑣𝑣𝑔𝑔𝑆𝑆 = the coefficient of variation of the post-stratified weights for domain g of 
the core sample and supplemental sample, respectively, 
𝑑𝑑𝑔𝑔∗𝐶𝐶  and 𝑑𝑑𝑔𝑔∗𝑆𝑆  = Kolmogorov-Smirnov (K-S) statistics, described below, for group g* of the 
core sample and supplemental sample, respectively, and 
g* = age 16-65 and age 66-74. 
 
The term 𝑛𝑛

1+𝑐𝑐𝑐𝑐2
 is the effective sample size, reflecting the design effect due to unequal 

weights. It represents the variance component of the MSE. The term d represents the bias 
component and is the K-S statistic (Chakravart, Laha, and Roy, 1967) for the distance 

    
Table 1: Post-stratification cells for pre-compositing calibration 

 
Cell Age group Region Education level 
1 16-65 1 - 
2 16-65 2 - 
3 16-65 3 Non-college graduates 
4 16-65 3 College graduates 
5 16-65 4 Non-college graduates 
6 16-65 4 College graduates 
7 66-74 - Non-college graduates 
8 66-74 - College graduates 



between the detailed (9-category) educational attainment distribution for the sample 
compared to the ACS. Because of limited sample size, d was calculated for each age group 
(g*) instead of by compositing domain. 
 
Table 2 shows the resulting compositing factors and components. As indicated in the table, 
the core sample was considerably larger than the supplemental sample. The relative sizes 
varied by region, which was a reason for using region in the compositing. The design effect 
is larger for the core national sample because of different selection probabilities and the 
nonresponse adjustments. As expected, the K-S statistics are larger for the supplemental 
sample. The compositing factor places most of the weight on the core national sample, 
although there is some variation by domain. The compositing factor likely over-penalized 
the higher design effects for the core sample and could have been improved by putting the 
squared CV and the K-S statistic on a similar scale. 
 

 
3.2 Variance Estimation 
 
For estimating variances, the PIAAC data tools3  require the use of replication methods. 
For Cycle 2, the PIAAC Consortium recommended Balanced Repeated Replication (BRR) 
with a Fay’s adjustment (commonly referred to as Fay’s method). One reason for the 
recommendation was that Fay’s method has been shown to be more robust in estimating 
variances of quantiles compared to the jackknife method (Judkins, 1990). In addition, by 
avoiding setting any replicate weights to zero, Fay’s method avoids undefined ratio 
statistics for small domains (Judkins, 1990) and reduces disclosure risk (i.e., a user cannot 
identify a set of cases in the same cluster based on a zero replicate weight). 
 
For the core national sample, first stage units were paired to form variance strata. The core 
national sample had a one-PSU-per-stratum design, so variance strata were formed by 
pairing non-certainty PSUs across strata. For certainty PSUs, groups of SSUs were paired 
to form the variance strata. Using Fay’s method and a perturbation factor k of 0.3, we 
created 44 replicate weights.  
 
For the supplemental sample, we created variance strata based on the original sample 
design, using the PSUs with responding sample. For states with two sampled PSUs in 
which data was collected in both, the two PSUs were paired to form a variance stratum. 
Otherwise, we grouped a PSU with another PSU (or two other PSUs) within the same 
region based on the similarity of the Cycle 1 small area estimate of the percentage at or 
below Level 1 in literacy. This resulted in 14 variance strata. 

                                                 
3 See https://www.oecd.org/en/data/datasets/PIAAC-2nd-Cycle-Database.html 

Table 2: Compositing Factors and Components  
     
Domain (g) 𝒏𝒏𝒈𝒈𝑪𝑪 𝒏𝒏𝒈𝒈𝑺𝑺  𝟏𝟏 + (𝒄𝒄𝒗𝒗𝒈𝒈𝑪𝑪)𝟐𝟐 𝟏𝟏 + (𝒄𝒄𝒗𝒗𝒈𝒈𝑺𝑺)𝟐𝟐 𝒅𝒅𝒈𝒈∗𝑪𝑪  𝒅𝒅𝒈𝒈∗𝑺𝑺  𝜶𝜶𝒈𝒈𝑪𝑪 
1 463 29 1.30 1.00 0.017 0.075 0.928 
2 554 34 1.27 1.00 0.017 0.075 0.931 
3 1,562 110 1.35 1.02 0.017 0.075 0.919 
4 711 110 1.39 1.00 0.017 0.075 0.831 
5 768 67 1.29 1.03 0.036 0.084 0.906 
        



We then formed replicate weights for the supplemental sample by treating the core and 
supplemental samples as independent samples from the same population. Given that the 
core sample PSUs had had no chance of selection in the supplemental sample, 
independence does not hold, but this approach should provide a conservative estimate of 
variance. Based on the 14 variance strata for the supplemental sample, we created 44 
replicates using Fay’s method (k = 0.3) and a Hadamard matrix of size 44. In combining 
the samples, the total number of replicates remained at 44, as each of the 44 supplemental 
sample replicates was paired at random with one of the 44 core sample replicates. All 
weighting adjustments applied to the full sample weights were also applied to the replicate 
weights. 
 
 

4. Evaluation and Outcomes 
 
4.1 Evaluation of National Estimates 
 
NCES and OECD required an evaluation to determine if the supplemental sample could be 
included in national and international reports. For the evaluation, we produced weights for 
the core-only sample and compared the results against the combined sample in terms of the 
weights, estimates, variances, and associations. The weighting process for the core-only 
sample was the same as that for the composited sample, except without the pre-compositing 
calibration and compositing steps. 
 
For cases in the core sample, the correlation between the core-only weights and combined 
sample weights was 0.989. The strong relationship between the two can be seen in Figure 
4. 
 

 
Figure 4: Scatterplot matrix comparing the core-only weights (SPAWT0) to the combined 
sample weights (SPFWT0) for the core sample cases 



 
For evaluating estimates, we compared weighted proportions of survey variables. One set 
of survey variables were used in nonresponse adjustments – MSA status, literacy-related 
status, presence of children in the household, and age. The other set of variables for the 
analysis came from the Background Questionnaire, were not used in weighting 
adjustments, and were believed to be related to proficiency. This included employment 
status, computer experience, language spoken at home, and financial literacy. The 
proficiency scores were not available at the time of the evaluation. We performed t-tests 
on the difference between the core-only estimate and combined sample estimate, and none 
were significantly different at α = 0.05. Figure 5 plots the core-only estimates versus the 
combined sample estimates, and it is evident that the two sets of estimates are very similar. 
 

 
Figure 5. Background Questionnaire variable estimates (in percentages) for the core-only 
sample versus the combined sample 
 
We also compared the standard errors of the same set of BQ estimates. No statistical test 
was performed, but from Figure 6, the standard errors can be seen to be of similar 
magnitude. As noted above, the method for combining the samples was partly chosen to 
limit the variation in the weights. This was accomplished, and the two sets of weights had 
similar CVs – 69% for core-only and 68% for combined. 
 



 
Figure 6. Standard errors of Background Questionnaire estimates for the core-only sample 
versus the combined sample 
 
We used chi-square tests and regression to evaluate the effect of the combined sample on 
associations. First, we ran chi-square tests of associations between auxiliary variables, such 
as education and race/ethnicity. Among 21 tests, there was agreement on 20 as to whether 
the association was statistically significant at α = 0.05. Next, we fit a regression model for 
education using three auxiliary variables (age, dwelling unit type, and the percentage of the 
population age 25 and older with a high school education) as predictors. The R-squared of 
the model was 11% when fit with either the core-only sample or the combined sample. The 
three auxiliary variables were significant in both models. 
 
The results are not surprising given the size of the supplemental sample, but the evaluation 
provides further confirmation of the quality of the combined sample. 
 
4.2 Modeling 
 
A main advantage of incorporating the supplemental sample was that the combined 
sample met the Consortium’s minimum sample size requirements for the IRT model. The 
sample was deemed sufficient to evaluate the quality of items and detect any country-by-
language misfit at the national level. The resulting data was of high quality, meaning 
results from the United States could be included in international reports. 
 
For small area estimation, the larger sample size should allow for less reliance on the 
model. Although incomplete, the supplemental sample helped with the goal of increasing 
the number of states and counties with data. The number of states with data increased 
from 34 for the core-only sample to 48 for the combined sample, and the number of 
counties with data increased from 89 to 126. In addition, the number of states with two or 
more PSUs increased from 31 to 37. As noted above, having two or more PSUs allows 
for direct estimation of variance for input into the models and captures some of the 
diversity of counties within a state. The small area estimation work is on-going, and no 
results are available at the time of this paper, but it is expected that the larger sample will 
help improve the quality of the estimates. 



 
 

5. Conclusions 
 
The challenge faced by U.S. PIAAC was one of an incomplete supplemental sample, i.e., 
a supplemental sample that began as a probability sample but where data collection was 
stopped short. While the selection probabilities were initially calculatable for the 
supplemental sample, they were unknown due to field staff working their assigned (non-
random) subsets of the full supplemental sample in the first two months of the data 
collection period. Some alternative methods use a model-assisted approach with the survey 
outcomes and available auxiliary data; however, survey outcomes were not available at the 
time of weighting. Therefore, we chose a calibration and compositing approach to combine 
the incomplete sample and the probability reference sample, with the aim of reducing bias 
in the incomplete sample while limiting the variance. Unlike the typical situation, the non-
probability sample was much smaller than the probability sample, and so inclusion bias in 
the non-probability sample was less of a concern. We strove to limit the bias as much as 
possible by calibrating the sample on variables related to inclusion and the survey outcome. 
We concluded that including the incomplete sample had a negligible effect on national 
estimates and should help strengthen model-based estimates by increasing the number of 
responses per assessment item for IRT models and the number of states and counties with 
data for small area estimation models.  
 
 
 

References 
 
Chakravarti, I.M., Laha, R.G., and Roy, J. (1967). Handbook of Methods of Applied 

Statistics, Volume I, John Wiley and Sons, pp. 392-394. 
Dever, J. (2018). Combining probability and nonprobability samples to form efficient 

hybrid estimates: An evaluation of the common support assumption. Proceedings of 
the 2018 Federal Committee on Statistical Methodology (FCSM) Research 
Conference. 

Elliott, M. and Valliant, R. (2017). Inference for nonprobability samples. Statist. 
Sci. 32 (2) 249 - 264, May 2017. https://doi.org/10.1214/16-STS598. 

Judkins, D. R. (1990). Fay’s Method for Variance Estimation. Journal of Official Statistics, 
6, 3, 223-239. 

Krenzke, T., and Haung, W. (2009). Revisiting Nested Stratification of Primary Sampling 
Units. Proceedings of the Federal Committee on Statistical Methodology. 
https://nces.ed.gov/FCSM/pdf/2009FCSM_Krenzke_IX-C.pdf. 

Krenzke, T., VanDeKerckhove, W., Thornton, N., Diaz-Hoffmann, L., Hogan, J., 
Mohadjer, L., Li, L., Li, J., Yamamoto, K., Khorramdel, L., and Ali, U. (2019). U.S. 
Program for the International Assessment of Adult Competencies (PIAAC) 
2012/2014/2017: Main Study, National Supplement, and PIAAC 2017 Technical 
Report (NCES 2020-224). U.S. Department of Education. Washington, DC: National 
Center for Education Statistics. 
https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2020224. 

Krenzke, T., and Mohadjer, L. (2020). Application of probability-based link-tracing and 
non-probability approaches to sampling out-of-school youth in developing countries. 
Journal of Survey Statistics and Methodology. doi: 
https://doi.org/10.1093/jssam/smaa010 



National Center for Education Statistics. (2012). 2012 NCES Statistical Standards. 
Available at https://nces.ed.gov/statprog/2012/. 

Organisation for Economic Cooperation and Development. (2022). Cycle 2 PIAAC 
Technical Standards and Guidelines. 
https://www.oecd.org/content/dam/oecd/en/about/programmes/edu/piaac/technical-
standards-and-guidelines/cycle-
2/PIAAC_CY2_Technical_Standards_and_Guidelines.pdf/_jcr_content/renditions/ori
ginal./PIAAC_CY2_Technical_Standards_and_Guidelines.pdf.  

PIAAC International Highlights Web Report (NCES 2020-127). U.S. Department of 
Education. Institute of Education Sciences, National Center for Education Statistics. 
Available at https://nces.ed.gov/surveys/piaac/international_context.asp. 

Valliant, R. (2020). Comparing alternatives for estimation from nonprobability samples. 
Journal of Survey Statistics and Methodology, 8, 231-263. DOI: 
10.1093/jssam/smz003. 

Wu, C. (2022). Statistical inference with non-probability survey samples. Survey 
Methodology, Statistics Canada, Catalogue No. 12-001-X, Vol. 48, No. 2. 
http://www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.htm. 

Yamamoto, K., Khorramdel, L., von Davier, M. Ali, U., and Robin, R. (2019). Scaling 
PIAAC cognitive data. Technical Report of the Survey of Adult Skills (PIAAC) (3rd 
Edition), Chapter 17. Organisation for Economic Cooperation and Development. 
https://www.oecd.org/content/dam/oecd/en/about/programmes/edu/piaac/technical-
reports/cycle-1/PIAAC_Technical_Report_2019.pdf. 

 


