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Disclaimer

The findings and conclusions in this report are those of the authors and
should not be construed to represent any official USDA or U.S.
Government determination or policy.
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Background

The Agriculture Resource Management Survey (ARMS) is administered
annually by the United States Department of Agriculture’s National
Agricultural Statistics Services (NASS) to ascertain :

U.S. farm and ranch production practices

Resource use

Economic information
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Background Cont’d

The survey is administered in three phases:

Phase 1 is a screener for Phases II and III

Phase II collects production practices data

Phase III collects farm, economic, and operator characteristics data

ARMS Phase III utilizes a dual frame design:

List Frame

Area Frame
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Background Cont’d

For the Area Frame component, the June Area Survey (JAS) is used to
identify operators that are not on the ARMS List Frame:

These specific operations comprise the ARMS Area Frame Not on
List (ARMS NOL) sampling frame.

Using the JAS to compile the ARMS NOL sampling frame is an important
step to -

Maintain sampling frame integrity

Complement the list frame incompleteness

Obtain accurate and complete farm population survey indicators
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Five ML Methods

Machine Learning (ML) approaches will be used in this project to conduct
screening level evaluations of the ARMS NOL sampling frame. We want
to predict membership of a farm - whether it is ARMS NOL or not. Five
Machine Learning supervised classification methods were explored for this
project:

1 Random Forest

2 Gradient Boosting

3 Logistic Regression

4 Support Vector Machine

5 Neural Network
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Dataset

1 Dataset for this initial phase of this project was obtained from 2023
Texas JAS segments.

2 Total record count is about 3,000.

3 Select administrative and geographical variables were removed.

4 Training and Testing data were split in approximately 60:40 ratio.

5 It is an imbalanced dataset in terms of response variable: (ARMS
NOL vs. NOT ARMS NOL).

6 In the Training dataset positive ARMS NOL cases were oversampled
to make it approximately balanced.
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Random Forest

Random Forest (RF) is an ensemble learning technique. In a 2022
publication, Rezaei and Jabbari characterized-

1 Random forests as a group of decision trees working together on a
specific prediction.

2 The outcome is determined by the predictions from the majority of
these trees.

“caret” package in R was used to implement this method. Three repeated
ten fold cross-validation were used.
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Random Forest

Important predictor variables
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Random Forest

Repeated Cross Validation- tuning parameter is selected through Grid
Search: metric accuracy
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Random Forest

The Confusion Matrix and Statistics are based on Test Data:
Actual

0 1

P
re
d
ic
te
d 0 647 106

1 189 186

˜

1 Accuracy = 0.7385

2 Kappa = 0.3761

3 Sensitivity = 0.6370

4 Specificity = 0.7739

5 Balanced Accuracy = 0.7055

6 Positive Class = 1
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Gradient Boosting Method:GBM

In their 2021 paper, Belyadi and Haghighat explain that gradient boosting
is an ensemble supervised machine learning technique that integrates
several weak learners to form a final model-

1 This approach involves training the models sequentially, where more
emphasis is placed on instances with incorrect predictions, which
helps to progressively reduce the loss function.

2 The weak learners’ predictions are evaluated against the actual
outcomes, and the resulting difference indicates the model’s error rate.

3 “caret” package in R was used to implement Stochastic Gradient
Boosting method (GBM). Three repeated ten fold cross-validation
were used.
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Gradient Boosting Method

Repeated Cross Validation: metric accuracy
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GBM

The Confusion Matrix and Statistics are based on Test Data
Actual

0 1

P
re
d
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d 0 635 109

1 201 183

˜

1 Accuracy = 0.7252

2 Kappa = 0.3504

3 Sensitivity = 0.6267

4 Specificity = 0.7596

5 Balanced Accuracy = 0.6931

6 Positive Class = 1
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Logistic Regression

The Logistic regression model is subset of a broad class of models known
as generalized linear models (GLM).

1 Logistic regression models a relationship between predictor variables
and a binary response variable.

2 Link function is Logit.

3 It is a supervised machine learning algorithm.

“caret” package in R was used to implement this method.

Bayazid H. Sarkar, Peter Quan, Andrew Dau FCSM Conference: 15 / 28



Ease of Interpretation

The model coeffcients of logistic regressions are easier to interpret using
odds ratio.

1 The regression coefficient for land rented to others is -0.827 , we can
say that an extra acre of land renting to others decreases the odds of
being in ARMS NOL by a factor of 0.44.

2 The regression coefficient for owning land is 0.155, we can say that
an extra acre of owning land increases the odds of being in ARMS
NOL by a factor of 1.17.
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Logistic Regression

The Confusion Matrix and Statistics are based on Test Data
Actual

0 1
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d
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d 0 384 39

1 452 253

˜

1 Accuracy = 0.5647

2 Kappa = 0.2231

3 Sensitivity = 0.8664

4 Specificity = 0.4593

5 Balanced Accuracy = 0.6629

6 Positive Class = 1
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Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning algorithm
employed for various classification and regression tasks, such as image
processing, agriculture, text analytics, disease detection in medical
applications, etc. According to MathWorks -

1 The goal of the SVM algorithm is to identify a hyperplane that most
effectively separates data points of one class from those of another.

2 This“best” hyperplane is characterized by having the largest margin
between the two classes.

“caret” package in R was used to implement this method. Three repeated
ten fold cross-validation were used.
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Support Vector Machine

Repeated Cross Validation: metric accuracy
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SVM

The Confusion Matrix and Statistics are based on Test Data
Actual

0 1

P
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d
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d 0 429 57

1 407 235

˜

1 Accuracy = 0.5887

2 Kappa = 0.2287

3 Sensitivity = 0.8048

4 Specificity = 0.5132

5 Balanced Accuracy = 0.6590

6 Positive Class = 1
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Neural Network-NNET

According to IBM - A Neural Network (NNET) is a machine learning
program, or model, that makes decisions in a manner similar to the human
brain.
Every neural network consists of

1 layers of nodes or artificial neurons—an input layer

2 one or more hidden layers

3 an output layer

“nnet” package in R was used to implement this method.
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Neural Network-NNET

Architechture of NNET for ARMS NOL Data

1 23 nodes in the input layer

2 1 hidden layer and 10 nodes in the hidden layer

3 1 node in the output layer

4 activation function is logistic
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NNET

The Confusion Matrix and Statistics are based on Test Data
Actual

0 1

P
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d
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d 0 486 65

1 350 227

˜

1 Accuracy = 0.6321

2 Kappa = 0.2723

3 Sensitivity = 0.7774

4 Specificity = 0.5813

5 Balanced Accuracy = 0.6794

6 Positive Class = 1
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Summary Metrics of the 5 ML Methods

ML Method Sensitivity Specificity Accuracy

RF 0.6370 0.7739 0.7385

GBM 0.6267 0.7596 0.7252

Logistic 0.8664 0.4593 0.5647

SVM 0.8048 0.5132 0.5887

NNET 0.7774 0.5813 0.6321
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The Performance of Five Methods

1 RF method achieved the highest accuracy and specificicity.

2 GBM method showed the second highest accuracy.

3 Logistic regression demonstrated the highest sensitivity; however, its
specificity is the lowest.

4 SVM achieved the second highest sensitivity, but its specificity is the
second lowest.

5 NNET showed moderate specificity and sensitivity.
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Future Work

1 Expand the scope of this work to other states

2 Combine multiple years of data for states where NOL population
count is small

3 Apply to resolve the cases when there is discrepency of name and
address between multiple frames

4 Add additional JAS variables
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THANK YOU!
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