

Synthesizing the Supplemental Synthetic Public Use File

Victoria Bryant, Chris Rexrode, Derek Gutierrez Statistics of Income, Internal Revenue Service

October 24, 2024

Transition to Synthetic PUF and Tiered Access

Tier	Access	To Whom
1	Tabular data and reports	Anybody – via website and published reports
2	Synthetic individual income information	Anybody who needs it – upon request to SOI
3	Validation server: Automated system allows researchers to access confidential tax return information in an environment that protects against disclosure	Researchers vetted by SOI with a research plan that could not be completed using tier 1 or tier 2 access.
4	Access to confidential microdata	Researchers approved for access through the Joint Statistical Research Program.

Transition to Synthetic PUF and Tiered Access

Tier	Access	To Whom
1	Tabular data and reports	Anybody – via website and published reports
2	Synthetic individual income information	Anybody who needs it – upon request to SOI
3	Validation server: Automated system allows researchers to access confidential tax return information in an environment that protects against disclosure	Researchers vetted by SOI with a research plan that could not be completed using tier 1 or tier 2 access.
4	Access to confidential microdata	Researchers approved for access through the Joint Statistical Research Program.

Taxpayer Privacy and Confidentiality

Any publicly released tax data must protect the confidentiality of individual taxpayers.

Tabular released data

- Rule of 3
- Rule of 10
- Dominance Rule
- Associated Suppression
- Disclosure by subtraction
- Cross-cell disclosure
- Complimentary disclosure

As the scope of information on individuals that is publicly accessible increases, so too must SOI improve protection techniques.

Microdata release

- Subsampling
 - Reweighting
- Aggregation
- Top Coding
- Blurring
 - Multivariate
 - Univariate
 - Rebalancing
- Random Noise
 - Rounding
- Suppression

Synthetic Data – General Approach

General methodology

No real observations are released

- Possibility of expanded demographic and/or tax information
- Possibility of multiple file releases targeting different population subsets

Potential Pitfalls:

- Model overfitting may result in synthetic data too close to underlying data.
- Database Reconstruction Theorem (Dinur and Nissim, 2003): noisy subset sums can approximate individual records through solving a system of equations.
- Modeler may overcompensate for these concerns resulting in data without enough overlap to confidential data to be statistically useful.

Synthesis Process

Synthesis Process, cont.

Subdivide sample into 2 parts

Those records with just demographic information

Those records with at least one tax amount > 0

- Randomly assigned *gender*, based on proportions of underlying data
- Synthesized age based on gender
- Assigned zeros to all tax variables

Synthesized zero records

- 2
- Randomly assigned *gender*, based on proportions of underlying data
- Sequentially synthesize variables using CART starting with age conditional on previously synthesized outcome variables
 - Each point is randomly sampled with replacement
 - For continuous variables starting with *Social Security Benefits* then synthesized in order of linear correlation to *Social Security Benefits*.

Obs	Value	Ntile	Optimal KDE Variance	Synthetic Value Distribution				
1	\$0	1st	\$0	0				
2	\$0	1st	\$0	0				
3	\$6,400	66th	\$650	~ N(µ=6,400, σ²=650)				
4	\$9,900	98th	\$2,300	~ N(µ=9,900, σ ² =2,300)				

- Then draw a value from a smoothed KDE distribution
 - ~ N(μ = sampled value, σ2 = "percentile variance")
 - Variance for a Kernel Density Estimator (KDE) of the percentile of the mean

7 Synthesizing Information Returns | Statistics of Income

Fully Synthetic File

Synthesized nonzero records

CART - Methodology

Process:

- 1. Assign gender based on the distribution of confidential data.
- 2. Predict *age* conditional on *gender*, minimizing heterogeneity within groups. Then randomly select value from within those final nodes.
- 3. Predict Social Security Benefits conditional on gender and age, to minimize Sum of Square Errors.
- 4. Predict next highest linearly correlated variable(s) conditional on *gender, age, and Social Security*

CART – Methodology, cont.

Stylized Example, cont.

Males, < 55

	-,						
Obs	Value	Ntile	Optimal KDE Variance	Synthetic Value Distribution			
1	\$0	1st	\$0	0			
2	\$0	1st	\$0	0			
3	\$6,400	66th	\$650	~ N(µ=6,400, σ²=650)			
4	\$9,900	98th	\$2,300	~ N(µ=9,900, σ ² =2,300)			

Expanded Stylized Example

Draw a value from a smoothed Kernel Density function for each percentile of values predicted by CART.

Imposed protocols

- Sample of 1 in 1,000 observations
- Top code age at 85
- Terminal nodes limited to 50
- Kernel Density Estimator with variance σ^2
- Run through simple tax calculator
- Round continuous variables

Validation Metrics

- Duplicates
- Unique-Donors
- Unique-Uniques
- Row-wise Squared Inverse Frequency
- *l*-diversity of final nodes

Measuring Quality

Summary statistics Correlation fit Kolmogorov-Smirnov (KS) test Regression confidence interval overlap

Summary statistics

Means

Standard deviations

Standard Deviation (excluding ze

Summary statistics, cont.

Skewness

Kurtosis

Correlation differences

Social Security	0																		
Wages	0	0																``	alues are the correlation differences
Taxable retirement income	0	0	0															h b	etween every combination
Withholding	0	0.01	-0.01	-0.02												1.1			etween every combination
Taxable unemployment	0	0	-0.01	0	0.02									* * *					Presented Synthetic Original
Business income	0.01	0	0	0	0	0													Difference Correlation Correlation
Pension received	-0.01	٥	0.03	0.02	-0.02	0.03	0.01											•	
State refund	0	-0.01	o	0	0	0.02	0	0											
Interest received	-0.01	0	0	0.02	0	0	0	0.02	0				11					(Generally equal 0
Mortgage interest	0.01	0	0.01	0.01	0	0	0	-0.01	-0.05	0									 Tax-exempt interest
Above the line	0	0	-0.01	0	-0.01	-0.01	0	0	0	0	0								 Qualified dividends
Income residual	-0.01	-0.01	-0.01	0	-0.02	0	-0.01	0	0	0	-0.01	-0.01							Areas for further research
Taxable dividends	-0.01	0	0	0	0	0.01	0.01	0	0	-0.01	0.01	0	0						
Long-term capital gain	-0.01	0	0	-0.01	-0.01	0.01	0	0.01	0	0.01	-0.01	0	-0.01	-0.01					
Tax-exempt interest	0	-0.01	o	0	0	0	0	0.02	0	0.03	0	-0.01	6	0.06	-0.01				
Qualified dividends	-0.01	0	0	0	0	0	0.01	0	0	0.01	0	0	2	0.06	0	0.05)	1.1	
Schedule E	0	0	0	0.01	0	0.01	0.01	0.01	0	-0.01	-0.04	0.02	0	0.02	-0.01	0	0.0	12	
	a	2	s	a	0	ţ	Ð	0	0	0	st	<u>ں</u>	T	s s	.5	t,	5	s	
	Ao	scurit	Nage	moor	oldin	ymer	ncom	ceive	efun	ceive	tere	le lin	sidu	denc	algai	tere		dend	
		al Se	-	entir	/ithh	nplo	ess ir	n rec	ate I	st rec	de ir	vet	nere	divip	apit			NID 0	
		Soci		reme	\$	uner	usine	ensio	St	tere	ortoa	Abo	ncor	xable	E	Texe		lified	
				e reti		able	8	P		<u>_</u>	ž			Lay	ng-te	Tax-F	(a)	Oua	
				xable		Taxa									Lo				
			_	a l															

Kolmogorov-Smirnov (KS) test

Purpose: Equivalence of univariate probability distributions

 H_0 = samples come from the same underlying distribution

Confidence interval overlap

Purpose: Average relative overlap between Cls for each coefficient in identical models.

Wages = f(all other vars)

Interpretation:

- 1 = Perfect overlap 0 = No overlap, adjacent CIs
- < 0 = The distance between CIs

Original Orynthetic

October 24, 2024

Thank you

Victoria.L.Bryant@irs.gov

17 Synthesizing Information Returns | Statistics of Income

October 24, 2024